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Documentation for icefall, containing speech recognition recipes using k2.
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CHAPTER

ONE

ICEFALL FOR DUMMIES TUTORIAL

This tutorial walks you step by step about how to create a simple ASR (Automatic Speech Recognition) system with
Next-gen Kaldi.

We use the yesno dataset for demonstration. We select it out of two reasons:

• It is quite tiny, containing only about 12 minutes of data

• The training can be finished within 20 seconds on CPU.

That also means you don’t need a GPU to run this tutorial.

Let’s get started!

Please follow items below sequentially.

Note: The Data Preparation runs only on Linux and on macOS. All other parts run on Linux, macOS, and Windows.

Help from the community is appreciated to port the Data Preparation to Windows.

1.1 Environment setup

We will create an environment for Next-gen Kaldi that runs on CPU in this tutorial.

Note: Since the yesno dataset used in this tutorial is very tiny, training on CPU works very well for it.

If your dataset is very large, e.g., hundreds or thousands of hours of training data, please follow Installation to install
icefall that works with GPU.

1.1.1 Create a virtual environment

virtualenv -p python3 /tmp/icefall_env

The above command creates a virtual environment in the directory /tmp/icefall_env. You can select any directory
you want.

The output of the above command is given below:

3
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Already using interpreter /usr/bin/python3
Using base prefix '/usr'
New python executable in /tmp/icefall_env/bin/python3
Also creating executable in /tmp/icefall_env/bin/python
Installing setuptools, pkg_resources, pip, wheel...done.

Now we can activate the environment using:

source /tmp/icefall_env/bin/activate

1.1.2 Install dependencies

Warning: Remeber to activate your virtual environment before you continue!

After activating the virtual environment, we can use the following command to install dependencies of icefall:

Hint: Remeber that we will run this tutorial on CPU, so we install dependencies required only by running on CPU.

# Caution: Installation order matters!

# We use torch 2.0.0 and torchaduio 2.0.0 in this tutorial.
# Other versions should also work.

pip install torch==2.0.0+cpu torchaudio==2.0.0+cpu -f https://download.pytorch.org/whl/
→˓torch_stable.html

# If you are using macOS or Windows, please use the following command to install torch␣
→˓and torchaudio
# pip install torch==2.0.0 torchaudio==2.0.0 -f https://download.pytorch.org/whl/torch_
→˓stable.html

# Now install k2
# Please refer to https://k2-fsa.github.io/k2/installation/from_wheels.html#linux-cpu-
→˓example

pip install k2==1.24.3.dev20230726+cpu.torch2.0.0 -f https://k2-fsa.github.io/k2/cpu.html

# Install the latest version of lhotse

pip install git+https://github.com/lhotse-speech/lhotse

4 Chapter 1. Icefall for dummies tutorial
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1.1.3 Install icefall

We will put the source code of icefall into the directory /tmp You can select any directory you want.

cd /tmp
git clone https://github.com/k2-fsa/icefall
cd icefall
pip install -r ./requirements.txt

# Anytime we want to use icefall, we have to set the following
# environment variable

export PYTHONPATH=/tmp/icefall:$PYTHONPATH

Hint:
If you get the following error during this tutorial:

ModuleNotFoundError: No module named 'icefall'

please set the above environment variable to fix it.

Congratulations! You have installed icefall successfully.

1.1.4 For the more curious

icefall contains a collection of Python scripts and you don’t need to use python3 setup.py install or pip
install icefall to install it. All you need to do is to download the code and set the environment variable
PYTHONPATH.

1.2 Data Preparation

After Environment setup, we can start preparing the data for training and decoding.

The first step is to prepare the data for training. We have already provided prepare.sh that would prepare everything
required for training.

cd /tmp/icefall
export PYTHONPATH=/tmp/icefall:$PYTHONPATH
cd egs/yesno/ASR

./prepare.sh

Note that in each recipe from icefall, there exists a file prepare.sh, which you should run before you run anything
else.

That is all you need for data preparation.

1.2. Data Preparation 5
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1.2.1 For the more curious

If you are wondering how to prepare your own dataset, please refer to the following URLs for more details:

• https://github.com/lhotse-speech/lhotse/tree/master/lhotse/recipes

It contains recipes for a variety of dataset. If you want to add your own dataset, please read recipes in this folder
first.

• https://github.com/lhotse-speech/lhotse/blob/master/lhotse/recipes/yesno.py

The yesno recipe in lhotse.

If you already have a Kaldi dataset directory, which contains files like wav.scp, feats.scp, then you can refer to
https://lhotse.readthedocs.io/en/latest/kaldi.html#example.

1.2.2 A quick look to the generated files

./prepare.sh puts generated files into two directories:

• download

• data

download

The download directory contains downloaded dataset files:

tree -L 1 ./download/

./download/
|-- waves_yesno
`-- waves_yesno.tar.gz

Hint: Please refer to https://github.com/lhotse-speech/lhotse/blob/master/lhotse/recipes/yesno.py#L41 for how the
data is downloaded and extracted.

data

tree ./data/

./data/
|-- fbank
| |-- yesno_cuts_test.jsonl.gz
| |-- yesno_cuts_train.jsonl.gz
| |-- yesno_feats_test.lca
| `-- yesno_feats_train.lca
|-- lang_phone
| |-- HLG.pt
| |-- L.pt
| |-- L_disambig.pt
| |-- Linv.pt

(continues on next page)
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(continued from previous page)

| |-- lexicon.txt
| |-- lexicon_disambig.txt
| |-- tokens.txt
| `-- words.txt
|-- lm
| |-- G.arpa
| `-- G.fst.txt
`-- manifests

|-- yesno_recordings_test.jsonl.gz
|-- yesno_recordings_train.jsonl.gz
|-- yesno_supervisions_test.jsonl.gz
`-- yesno_supervisions_train.jsonl.gz

4 directories, 18 files

data/manifests:
This directory contains manifests. They are used to generate files in data/fbank.

To give you an idea of what it contains, we examine the first few lines of the manifests related to the train
dataset.

cd data/manifests
gunzip -c yesno_recordings_train.jsonl.gz | head -n 3

The output is given below:

{"id": "0_0_0_0_1_1_1_1", "sources": [{"type": "file", "channels": [0],
→˓ "source": "/tmp/icefall/egs/yesno/ASR/download/waves_yesno/0_0_0_0_
→˓1_1_1_1.wav"}], "sampling_rate": 8000, "num_samples": 50800,
→˓"duration": 6.35, "channel_ids": [0]}
{"id": "0_0_0_1_0_1_1_0", "sources": [{"type": "file", "channels": [0],
→˓ "source": "/tmp/icefall/egs/yesno/ASR/download/waves_yesno/0_0_0_1_
→˓0_1_1_0.wav"}], "sampling_rate": 8000, "num_samples": 48880,
→˓"duration": 6.11, "channel_ids": [0]}
{"id": "0_0_1_0_0_1_1_0", "sources": [{"type": "file", "channels": [0],
→˓ "source": "/tmp/icefall/egs/yesno/ASR/download/waves_yesno/0_0_1_0_
→˓0_1_1_0.wav"}], "sampling_rate": 8000, "num_samples": 48160,
→˓"duration": 6.02, "channel_ids": [0]}

Please refer to https://github.com/lhotse-speech/lhotse/blob/master/lhotse/audio.py#L300 for the mean-
ing of each field per line.

gunzip -c yesno_supervisions_train.jsonl.gz | head -n 3

The output is given below:

{"id": "0_0_0_0_1_1_1_1", "recording_id": "0_0_0_0_1_1_1_1", "start": 0.0,
→˓"duration": 6.35, "channel": 0, "text": "NO NO NO NO YES YES YES YES",
→˓"language": "Hebrew"}
{"id": "0_0_0_1_0_1_1_0", "recording_id": "0_0_0_1_0_1_1_0", "start": 0.0,
→˓"duration": 6.11, "channel": 0, "text": "NO NO NO YES NO YES YES NO",
→˓"language": "Hebrew"}
{"id": "0_0_1_0_0_1_1_0", "recording_id": "0_0_1_0_0_1_1_0", "start": 0.0,

(continues on next page)
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(continued from previous page)

→˓"duration": 6.02, "channel": 0, "text": "NO NO YES NO NO YES YES NO",
→˓"language": "Hebrew"}

Please refer to https://github.com/lhotse-speech/lhotse/blob/master/lhotse/supervision.py#L510 for the
meaning of each field per line.

data/fbank:

This directory contains everything from data/manifests. Furthermore, it also contains features for
training.

data/fbank/yesno_feats_train.lca contains the features for the train dataset. Features are com-
pressed using lilcom.

data/fbank/yesno_cuts_train.jsonl.gz stores the CutSet, which stores RecordingSet, Supervi-
sionSet, and FeatureSet.

To give you an idea about what it looks like, we can run the following command:

cd data/fbank

gunzip -c yesno_cuts_train.jsonl.gz | head -n 3

The output is given below:

{"id": "0_0_0_0_1_1_1_1-0", "start": 0, "duration": 6.35, "channel": 0,
→˓ "supervisions": [{"id": "0_0_0_0_1_1_1_1", "recording_id": "0_0_0_0_
→˓1_1_1_1", "start": 0.0, "duration": 6.35, "channel": 0, "text": "NO␣
→˓NO NO NO YES YES YES YES", "language": "Hebrew"}], "features": {"type
→˓": "kaldi-fbank", "num_frames": 635, "num_features": 23, "frame_shift
→˓": 0.01, "sampling_rate": 8000, "start": 0, "duration": 6.35,
→˓"storage_type": "lilcom_chunky", "storage_path": "data/fbank/yesno_
→˓feats_train.lca", "storage_key": "0,13000,3570", "channels": 0},
→˓"recording": {"id": "0_0_0_0_1_1_1_1", "sources": [{"type": "file",
→˓"channels": [0], "source": "/tmp/icefall/egs/yesno/ASR/download/
→˓waves_yesno/0_0_0_0_1_1_1_1.wav"}], "sampling_rate": 8000, "num_
→˓samples": 50800, "duration": 6.35, "channel_ids": [0]}, "type":
→˓"MonoCut"}
{"id": "0_0_0_1_0_1_1_0-1", "start": 0, "duration": 6.11, "channel": 0,
→˓ "supervisions": [{"id": "0_0_0_1_0_1_1_0", "recording_id": "0_0_0_1_
→˓0_1_1_0", "start": 0.0, "duration": 6.11, "channel": 0, "text": "NO␣
→˓NO NO YES NO YES YES NO", "language": "Hebrew"}], "features": {"type
→˓": "kaldi-fbank", "num_frames": 611, "num_features": 23, "frame_shift
→˓": 0.01, "sampling_rate": 8000, "start": 0, "duration": 6.11,
→˓"storage_type": "lilcom_chunky", "storage_path": "data/fbank/yesno_
→˓feats_train.lca", "storage_key": "16570,12964,2929", "channels": 0},
→˓"recording": {"id": "0_0_0_1_0_1_1_0", "sources": [{"type": "file",
→˓"channels": [0], "source": "/tmp/icefall/egs/yesno/ASR/download/
→˓waves_yesno/0_0_0_1_0_1_1_0.wav"}], "sampling_rate": 8000, "num_
→˓samples": 48880, "duration": 6.11, "channel_ids": [0]}, "type":
→˓"MonoCut"}
{"id": "0_0_1_0_0_1_1_0-2", "start": 0, "duration": 6.02, "channel": 0,
→˓ "supervisions": [{"id": "0_0_1_0_0_1_1_0", "recording_id": "0_0_1_0_
→˓0_1_1_0", "start": 0.0, "duration": 6.02, "channel": 0, "text": "NO␣
→˓NO YES NO NO YES YES NO", "language": "Hebrew"}], "features": {"type

(continues on next page)
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→˓": "kaldi-fbank", "num_frames": 602, "num_features": 23, "frame_shift
→˓": 0.01, "sampling_rate": 8000, "start": 0, "duration": 6.02,
→˓"storage_type": "lilcom_chunky", "storage_path": "data/fbank/yesno_
→˓feats_train.lca", "storage_key": "32463,12936,2696", "channels": 0},
→˓"recording": {"id": "0_0_1_0_0_1_1_0", "sources": [{"type": "file",
→˓"channels": [0], "source": "/tmp/icefall/egs/yesno/ASR/download/
→˓waves_yesno/0_0_1_0_0_1_1_0.wav"}], "sampling_rate": 8000, "num_
→˓samples": 48160, "duration": 6.02, "channel_ids": [0]}, "type":
→˓"MonoCut"}

Note that yesno_cuts_train.jsonl.gz only stores the information about how to read the features. The
actual features are stored separately in data/fbank/yesno_feats_train.lca.

data/lang:

This directory contains the lexicon.

data/lm:

This directory contains language models.

1.3 Training

After Data Preparation, we can start training.

The command to start the training is quite simple:

cd /tmp/icefall
export PYTHONPATH=/tmp/icefall:$PYTHONPATH
cd egs/yesno/ASR

# We use CPU for training by setting the following environment variable
export CUDA_VISIBLE_DEVICES=""

./tdnn/train.py

That’s it!

You can find the training logs below:

1.3.1 For the more curious

./tdnn/train.py --help

will print the usage information about ./tdnn/train.py. For instance, you can specify the number of epochs to train
and the location to save the training results.

The training text logs are saved in tdnn/exp/log while the tensorboard logs are in tdnn/exp/tensorboard.

1.3. Training 9
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1.4 Decoding

After Training, we can start decoding.

The command to start the decoding is quite simple:

cd /tmp/icefall
export PYTHONPATH=/tmp/icefall:$PYTHONPATH
cd egs/yesno/ASR

# We use CPU for decoding by setting the following environment variable
export CUDA_VISIBLE_DEVICES=""

./tdnn/decode.py

The output logs are given below:

1.4.1 For the more curious

./tdnn/decode.py --help

will print the usage information about ./tdnn/decode.py. For instance, you can specify:

• --epoch to use which checkpoint for decoding

• --avg to select how many checkpoints to use for model averaging

You usually try different combinations of --epoch and --avg and select one that leads to the lowest WER (Word Error
Rate).

1.5 Model Export

There are three ways to export a pre-trained model.

• Export the model parameters via model.state_dict()

• Export via torchscript: either torch.jit.script() or torch.jit.trace()

• Export to ONNX via torch.onnx.export()

Each method is explained below in detail.

1.5.1 Export the model parameters via model.state_dict()

The command for this kind of export is

cd /tmp/icefall
export PYTHONPATH=/tmp/icefall:$PYTHONPATH
cd egs/yesno/ASR

# assume that "--epoch 14 --avg 2" produces the lowest WER.

./tdnn/export.py --epoch 14 --avg 2

10 Chapter 1. Icefall for dummies tutorial
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The output logs are given below:

2023-08-16 20:42:03,912 INFO [export.py:76] {'exp_dir': PosixPath('tdnn/exp'), 'lang_dir
→˓': PosixPath('data/lang_phone'), 'lr': 0.01, 'feature_dim': 23, 'weight_decay': 1e-06,
→˓'start_epoch': 0, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -
→˓1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 10, 'reset_interval':␣
→˓20, 'valid_interval': 10, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores':␣
→˓True, 'epoch': 14, 'avg': 2, 'jit': False}
2023-08-16 20:42:03,913 INFO [lexicon.py:168] Loading pre-compiled data/lang_phone/Linv.
→˓pt
2023-08-16 20:42:03,950 INFO [export.py:93] averaging ['tdnn/exp/epoch-13.pt', 'tdnn/exp/
→˓epoch-14.pt']
2023-08-16 20:42:03,971 INFO [export.py:106] Not using torch.jit.script
2023-08-16 20:42:03,974 INFO [export.py:111] Saved to tdnn/exp/pretrained.pt

We can see from the logs that the exported model is saved to the file tdnn/exp/pretrained.pt.

To give you an idea of what tdnn/exp/pretrained.pt contains, we can use the following command:

>>> import torch
>>> m = torch.load("tdnn/exp/pretrained.pt")
>>> list(m.keys())
['model']
>>> list(m["model"].keys())
['tdnn.0.weight', 'tdnn.0.bias', 'tdnn.2.running_mean', 'tdnn.2.running_var', 'tdnn.2.
→˓num_batches_tracked', 'tdnn.3.weight', 'tdnn.3.bias', 'tdnn.5.running_mean', 'tdnn.5.
→˓running_var', 'tdnn.5.num_batches_tracked', 'tdnn.6.weight', 'tdnn.6.bias', 'tdnn.8.
→˓running_mean', 'tdnn.8.running_var', 'tdnn.8.num_batches_tracked', 'output_linear.
→˓weight', 'output_linear.bias']

We can use tdnn/exp/pretrained.pt in the following way with ./tdnn/decode.py:

cd tdnn/exp
ln -s pretrained.pt epoch-99.pt
cd ../..

./tdnn/decode.py --epoch 99 --avg 1

The output logs of the above command are given below:

2023-08-16 20:45:48,089 INFO [decode.py:262] Decoding started
2023-08-16 20:45:48,090 INFO [decode.py:263] {'exp_dir': PosixPath('tdnn/exp'), 'lang_dir
→˓': PosixPath('data/lang_phone'), 'feature_dim': 23, 'search_beam': 20, 'output_beam':␣
→˓8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True,
→˓'epoch': 99, 'avg': 1, 'export': False, 'feature_dir': PosixPath('data/fbank'), 'max_
→˓duration': 30.0, 'bucketing_sampler': False, 'num_buckets': 10, 'concatenate_cuts':␣
→˓False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': False,
→˓ 'return_cuts': True, 'num_workers': 2, 'env_info': {'k2-version': '1.24.3', 'k2-build-
→˓type': 'Release', 'k2-with-cuda': False, 'k2-git-sha1':
→˓'ad79f1c699c684de9785ed6ca5edb805a41f78c3', 'k2-git-date': 'Wed Jul 26 09:30:42 2023',
→˓'lhotse-version': '1.16.0.dev+git.aa073f6.clean', 'torch-version': '2.0.0', 'torch-
→˓cuda-available': False, 'torch-cuda-version': None, 'python-version': '3.1', 'icefall-
→˓git-branch': 'master', 'icefall-git-sha1': '9a47c08-clean', 'icefall-git-date': 'Mon␣
→˓Aug 14 22:10:50 2023', 'icefall-path': '/private/tmp/icefall', 'k2-path': '/private/
→˓tmp/icefall_env/lib/python3.11/site-packages/k2/__init__.py', 'lhotse-path': '/private/

(continues on next page)
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→˓tmp/icefall_env/lib/python3.11/site-packages/lhotse/__init__.py', 'hostname':
→˓'fangjuns-MacBook-Pro.local', 'IP address': '127.0.0.1'}}
2023-08-16 20:45:48,092 INFO [lexicon.py:168] Loading pre-compiled data/lang_phone/Linv.
→˓pt
2023-08-16 20:45:48,103 INFO [decode.py:272] device: cpu
2023-08-16 20:45:48,109 INFO [checkpoint.py:112] Loading checkpoint from tdnn/exp/epoch-
→˓99.pt
2023-08-16 20:45:48,115 INFO [asr_datamodule.py:218] About to get test cuts
2023-08-16 20:45:48,115 INFO [asr_datamodule.py:253] About to get test cuts
2023-08-16 20:45:50,386 INFO [decode.py:203] batch 0/?, cuts processed until now is 4
2023-08-16 20:45:50,556 INFO [decode.py:240] The transcripts are stored in tdnn/exp/
→˓recogs-test_set.txt
2023-08-16 20:45:50,557 INFO [utils.py:564] [test_set] %WER 0.42% [1 / 240, 0 ins, 1 del,
→˓ 0 sub ]
2023-08-16 20:45:50,558 INFO [decode.py:248] Wrote detailed error stats to tdnn/exp/errs-
→˓test_set.txt
2023-08-16 20:45:50,559 INFO [decode.py:315] Done!

We can see that it produces an identical WER as before.

We can also use it to decode files with the following command:

# ./tdnn/pretrained.py requires kaldifeat
#
# Please refer to https://csukuangfj.github.io/kaldifeat/installation/from_wheels.html
# for how to install kaldifeat

pip install kaldifeat==1.25.0.dev20230726+cpu.torch2.0.0 -f https://csukuangfj.github.io/
→˓kaldifeat/cpu.html

./tdnn/pretrained.py \
--checkpoint ./tdnn/exp/pretrained.pt \
--HLG ./data/lang_phone/HLG.pt \
--words-file ./data/lang_phone/words.txt \
download/waves_yesno/0_0_0_1_0_0_0_1.wav \
download/waves_yesno/0_0_1_0_0_0_1_0.wav

The output is given below:

2023-08-16 20:53:19,208 INFO [pretrained.py:136] {'feature_dim': 23, 'num_classes': 4,
→˓'sample_rate': 8000, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30,
→˓'max_active_states': 10000, 'use_double_scores': True, 'checkpoint': './tdnn/exp/
→˓pretrained.pt', 'words_file': './data/lang_phone/words.txt', 'HLG': './data/lang_phone/
→˓HLG.pt', 'sound_files': ['download/waves_yesno/0_0_0_1_0_0_0_1.wav', 'download/waves_
→˓yesno/0_0_1_0_0_0_1_0.wav']}
2023-08-16 20:53:19,208 INFO [pretrained.py:142] device: cpu
2023-08-16 20:53:19,208 INFO [pretrained.py:144] Creating model
2023-08-16 20:53:19,212 INFO [pretrained.py:156] Loading HLG from ./data/lang_phone/HLG.
→˓pt
2023-08-16 20:53:19,213 INFO [pretrained.py:160] Constructing Fbank computer
2023-08-16 20:53:19,213 INFO [pretrained.py:170] Reading sound files: ['download/waves_
→˓yesno/0_0_0_1_0_0_0_1.wav', 'download/waves_yesno/0_0_1_0_0_0_1_0.wav']
2023-08-16 20:53:19,224 INFO [pretrained.py:176] Decoding started

(continues on next page)
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2023-08-16 20:53:19,304 INFO [pretrained.py:212]
download/waves_yesno/0_0_0_1_0_0_0_1.wav:
NO NO NO YES NO NO NO YES

download/waves_yesno/0_0_1_0_0_0_1_0.wav:
NO NO YES NO NO NO YES NO

2023-08-16 20:53:19,304 INFO [pretrained.py:214] Decoding Done

1.5.2 Export via torch.jit.script()

The command for this kind of export is

cd /tmp/icefall
export PYTHONPATH=/tmp/icefall:$PYTHONPATH
cd egs/yesno/ASR

# assume that "--epoch 14 --avg 2" produces the lowest WER.

./tdnn/export.py --epoch 14 --avg 2 --jit true

The output logs are given below:

2023-08-16 20:47:44,666 INFO [export.py:76] {'exp_dir': PosixPath('tdnn/exp'), 'lang_dir
→˓': PosixPath('data/lang_phone'), 'lr': 0.01, 'feature_dim': 23, 'weight_decay': 1e-06,
→˓'start_epoch': 0, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -
→˓1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 10, 'reset_interval':␣
→˓20, 'valid_interval': 10, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores':␣
→˓True, 'epoch': 14, 'avg': 2, 'jit': True}
2023-08-16 20:47:44,667 INFO [lexicon.py:168] Loading pre-compiled data/lang_phone/Linv.
→˓pt
2023-08-16 20:47:44,670 INFO [export.py:93] averaging ['tdnn/exp/epoch-13.pt', 'tdnn/exp/
→˓epoch-14.pt']
2023-08-16 20:47:44,677 INFO [export.py:100] Using torch.jit.script
2023-08-16 20:47:44,843 INFO [export.py:104] Saved to tdnn/exp/cpu_jit.pt

From the output logs we can see that the generated file is saved to tdnn/exp/cpu_jit.pt.

Don’t be confused by the name cpu_jit.pt. The cpu part means the model is moved to CPU before exporting. That
means, when you load it with:

torch.jit.load()

you don’t need to specify the argument map_location and it resides on CPU by default.

To use tdnn/exp/cpu_jit.pt with icefall to decode files, we can use:

# ./tdnn/jit_pretrained.py requires kaldifeat
#
# Please refer to https://csukuangfj.github.io/kaldifeat/installation/from_wheels.html
# for how to install kaldifeat

(continues on next page)
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pip install kaldifeat==1.25.0.dev20230726+cpu.torch2.0.0 -f https://csukuangfj.github.io/
→˓kaldifeat/cpu.html

./tdnn/jit_pretrained.py \
--nn-model ./tdnn/exp/cpu_jit.pt \
--HLG ./data/lang_phone/HLG.pt \
--words-file ./data/lang_phone/words.txt \
download/waves_yesno/0_0_0_1_0_0_0_1.wav \
download/waves_yesno/0_0_1_0_0_0_1_0.wav

The output is given below:

2023-08-16 20:56:00,603 INFO [jit_pretrained.py:121] {'feature_dim': 23, 'num_classes':␣
→˓4, 'sample_rate': 8000, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30,
→˓'max_active_states': 10000, 'use_double_scores': True, 'nn_model': './tdnn/exp/cpu_jit.
→˓pt', 'words_file': './data/lang_phone/words.txt', 'HLG': './data/lang_phone/HLG.pt',
→˓'sound_files': ['download/waves_yesno/0_0_0_1_0_0_0_1.wav', 'download/waves_yesno/0_0_
→˓1_0_0_0_1_0.wav']}
2023-08-16 20:56:00,603 INFO [jit_pretrained.py:127] device: cpu
2023-08-16 20:56:00,603 INFO [jit_pretrained.py:129] Loading torchscript model
2023-08-16 20:56:00,640 INFO [jit_pretrained.py:134] Loading HLG from ./data/lang_phone/
→˓HLG.pt
2023-08-16 20:56:00,641 INFO [jit_pretrained.py:138] Constructing Fbank computer
2023-08-16 20:56:00,641 INFO [jit_pretrained.py:148] Reading sound files: ['download/
→˓waves_yesno/0_0_0_1_0_0_0_1.wav', 'download/waves_yesno/0_0_1_0_0_0_1_0.wav']
2023-08-16 20:56:00,642 INFO [jit_pretrained.py:154] Decoding started
2023-08-16 20:56:00,727 INFO [jit_pretrained.py:190]
download/waves_yesno/0_0_0_1_0_0_0_1.wav:
NO NO NO YES NO NO NO YES

download/waves_yesno/0_0_1_0_0_0_1_0.wav:
NO NO YES NO NO NO YES NO

2023-08-16 20:56:00,727 INFO [jit_pretrained.py:192] Decoding Done

Hint: We provide only code for torch.jit.script(). You can try torch.jit.trace() if you want.

1.5.3 Export via torch.onnx.export()

The command for this kind of export is

cd /tmp/icefall
export PYTHONPATH=/tmp/icefall:$PYTHONPATH
cd egs/yesno/ASR

# tdnn/export_onnx.py requires onnx and onnxruntime
(continues on next page)
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pip install onnx onnxruntime

# assume that "--epoch 14 --avg 2" produces the lowest WER.

./tdnn/export_onnx.py \
--epoch 14 \
--avg 2

The output logs are given below:

2023-08-16 20:59:20,888 INFO [export_onnx.py:83] {'exp_dir': PosixPath('tdnn/exp'),
→˓'lang_dir': PosixPath('data/lang_phone'), 'lr': 0.01, 'feature_dim': 23, 'weight_decay
→˓': 1e-06, 'start_epoch': 0, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_
→˓train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 10,
→˓'reset_interval': 20, 'valid_interval': 10, 'beam_size': 10, 'reduction': 'sum', 'use_
→˓double_scores': True, 'epoch': 14, 'avg': 2}
2023-08-16 20:59:20,888 INFO [lexicon.py:168] Loading pre-compiled data/lang_phone/Linv.
→˓pt
2023-08-16 20:59:20,892 INFO [export_onnx.py:100] averaging ['tdnn/exp/epoch-13.pt',
→˓'tdnn/exp/epoch-14.pt']
================ Diagnostic Run torch.onnx.export version 2.0.0 ================
verbose: False, log level: Level.ERROR
======================= 0 NONE 0 NOTE 0 WARNING 0 ERROR ========================

2023-08-16 20:59:21,047 INFO [export_onnx.py:127] Saved to tdnn/exp/model-epoch-14-avg-2.
→˓onnx
2023-08-16 20:59:21,047 INFO [export_onnx.py:136] meta_data: {'model_type': 'tdnn',
→˓'version': '1', 'model_author': 'k2-fsa', 'comment': 'non-streaming tdnn for the yesno␣
→˓recipe', 'vocab_size': 4}
2023-08-16 20:59:21,049 INFO [export_onnx.py:140] Generate int8 quantization models
2023-08-16 20:59:21,075 INFO [onnx_quantizer.py:538] Quantization parameters for tensor:
→˓"/Transpose_1_output_0" not specified
2023-08-16 20:59:21,081 INFO [export_onnx.py:151] Saved to tdnn/exp/model-epoch-14-avg-2.
→˓int8.onnx

We can see from the logs that it generates two files:

• tdnn/exp/model-epoch-14-avg-2.onnx (ONNX model with float32 weights)

• tdnn/exp/model-epoch-14-avg-2.int8.onnx (ONNX model with int8 weights)

To use the generated ONNX model files for decoding with onnxruntime, we can use

# ./tdnn/onnx_pretrained.py requires kaldifeat
#
# Please refer to https://csukuangfj.github.io/kaldifeat/installation/from_wheels.html
# for how to install kaldifeat

pip install kaldifeat==1.25.0.dev20230726+cpu.torch2.0.0 -f https://csukuangfj.github.io/
→˓kaldifeat/cpu.html

./tdnn/onnx_pretrained.py \
--nn-model ./tdnn/exp/model-epoch-14-avg-2.onnx \
--HLG ./data/lang_phone/HLG.pt \

(continues on next page)
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--words-file ./data/lang_phone/words.txt \
download/waves_yesno/0_0_0_1_0_0_0_1.wav \
download/waves_yesno/0_0_1_0_0_0_1_0.wav

The output is given below:

2023-08-16 21:03:24,260 INFO [onnx_pretrained.py:166] {'feature_dim': 23, 'sample_rate':␣
→˓8000, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states
→˓': 10000, 'use_double_scores': True, 'nn_model': './tdnn/exp/model-epoch-14-avg-2.onnx
→˓', 'words_file': './data/lang_phone/words.txt', 'HLG': './data/lang_phone/HLG.pt',
→˓'sound_files': ['download/waves_yesno/0_0_0_1_0_0_0_1.wav', 'download/waves_yesno/0_0_
→˓1_0_0_0_1_0.wav']}
2023-08-16 21:03:24,260 INFO [onnx_pretrained.py:171] device: cpu
2023-08-16 21:03:24,260 INFO [onnx_pretrained.py:173] Loading onnx model ./tdnn/exp/
→˓model-epoch-14-avg-2.onnx
2023-08-16 21:03:24,267 INFO [onnx_pretrained.py:176] Loading HLG from ./data/lang_phone/
→˓HLG.pt
2023-08-16 21:03:24,270 INFO [onnx_pretrained.py:180] Constructing Fbank computer
2023-08-16 21:03:24,273 INFO [onnx_pretrained.py:190] Reading sound files: ['download/
→˓waves_yesno/0_0_0_1_0_0_0_1.wav', 'download/waves_yesno/0_0_1_0_0_0_1_0.wav']
2023-08-16 21:03:24,279 INFO [onnx_pretrained.py:196] Decoding started
2023-08-16 21:03:24,318 INFO [onnx_pretrained.py:232]
download/waves_yesno/0_0_0_1_0_0_0_1.wav:
NO NO NO YES NO NO NO YES

download/waves_yesno/0_0_1_0_0_0_1_0.wav:
NO NO YES NO NO NO YES NO

2023-08-16 21:03:24,318 INFO [onnx_pretrained.py:234] Decoding Done

Note: To use the int8 ONNX model for decoding, please use:

./tdnn/onnx_pretrained.py \
--nn-model ./tdnn/exp/model-epoch-14-avg-2.onnx \
--HLG ./data/lang_phone/HLG.pt \
--words-file ./data/lang_phone/words.txt \
download/waves_yesno/0_0_0_1_0_0_0_1.wav \
download/waves_yesno/0_0_1_0_0_0_1_0.wav

1.5.4 For the more curious

If you are wondering how to deploy the model without torch, please continue reading. We will show how to use
sherpa-onnx to run the exported ONNX models, which depends only on onnxruntime and does not depend on torch.

In this tutorial, we will only demonstrate the usage of sherpa-onnx with the pre-trained model of the yesno recipe.
There are also other two frameworks available:

• `sherpa`_. It works with torchscript models.

• sherpa-ncnn. It works with models exported using icefall_export_to_ncnn with ncnn
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Please see https://k2-fsa.github.io/sherpa/ for further details.
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CHAPTER

TWO

INSTALLATION

Hint: We also provide Docker support, which has already setup the environment for you.

Hint: We have a colab notebook guiding you step by step to setup the environment.

icefall depends on k2 and lhotse.

We recommend that you use the following steps to install the dependencies.

• (0) Install CUDA toolkit and cuDNN

• (1) Install torch and torchaudio

• (2) Install k2

• (3) Install lhotse

Caution: Installation order matters.

2.1 (0) Install CUDA toolkit and cuDNN

Please refer to https://k2-fsa.github.io/k2/installation/cuda-cudnn.html to install CUDA and cuDNN.

2.2 (1) Install torch and torchaudio

Please refer https://pytorch.org/ to install torch and torchaudio.

Caution: Please install torch and torchaudio at the same time.
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2.3 (2) Install k2

Please refer to https://k2-fsa.github.io/k2/installation/index.html to install k2.

Caution: Please don’t change your installed PyTorch after you have installed k2.

Note: We suggest that you install k2 from pre-compiled wheels by following https://k2-fsa.github.io/k2/installation/
from_wheels.html

Hint: Please always install the latest version of k2.

2.4 (3) Install lhotse

Please refer to https://lhotse.readthedocs.io/en/latest/getting-started.html#installation to install lhotse.

Hint: We strongly recommend you to use:

pip install git+https://github.com/lhotse-speech/lhotse

to install the latest version of lhotse.

2.5 (4) Download icefall

icefall is a collection of Python scripts; what you need is to download it and set the environment variable PYTHONPATH
to point to it.

Assume you want to place icefall in the folder /tmp. The following commands show you how to setup icefall:

cd /tmp
git clone https://github.com/k2-fsa/icefall
cd icefall
pip install -r requirements.txt
export PYTHONPATH=/tmp/icefall:$PYTHONPATH

Hint: You can put several versions of icefall in the same virtual environment. To switch among different versions of
icefall, just set PYTHONPATH to point to the version you want.
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2.6 Installation example

The following shows an example about setting up the environment.

2.6.1 (1) Create a virtual environment

kuangfangjun:~$ virtualenv -p python3.8 test-icefall
created virtual environment CPython3.8.0.final.0-64 in 9422ms
creator CPython3Posix(dest=/star-fj/fangjun/test-icefall, clear=False, no_vcs_

→˓ignore=False, global=False)
seeder FromAppData(download=False, pip=bundle, setuptools=bundle, wheel=bundle,␣

→˓via=copy, app_data_dir=/star-fj/fangjun/.local/share/virtualenv)
added seed packages: pip==22.3.1, setuptools==65.6.3, wheel==0.38.4

activators BashActivator,CShellActivator,FishActivator,NushellActivator,
→˓PowerShellActivator,PythonActivator

kuangfangjun:~$ source test-icefall/bin/activate

(test-icefall) kuangfangjun:~$

2.6.2 (2) Install CUDA toolkit and cuDNN

You need to determine the version of CUDA toolkit to install.

(test-icefall) kuangfangjun:~$ nvidia-smi | head -n 4

Wed Jul 26 21:57:49 2023
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 510.47.03 Driver Version: 510.47.03 CUDA Version: 11.6 |
|-------------------------------+----------------------+----------------------+

You can choose any CUDA version that is not greater than the version printed by nvidia-smi. In our case, we can
choose any version <= 11.6.

We will use CUDA 11.6 in this example. Please follow https://k2-fsa.github.io/k2/installation/cuda-cudnn.html#
cuda-11-6 to install CUDA toolkit and cuDNN if you have not done that before.

After installing CUDA toolkit, you can use the following command to verify it:

(test-icefall) kuangfangjun:~$ nvcc --version

nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2019 NVIDIA Corporation
Built on Wed_Oct_23_19:24:38_PDT_2019
Cuda compilation tools, release 10.2, V10.2.89
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2.6.3 (3) Install torch and torchaudio

Since we have selected CUDA toolkit 11.6, we have to install a version of torch that is compiled against CUDA 11.6.
We select torch 1.13.0+cu116 in this example.

After selecting the version of torch to install, we need to also install a compatible version of torchaudio, which is
0.13.0+cu116 in our case.

Please refer to https://pytorch.org/audio/stable/installation.html#compatibility-matrix to select an appropriate version
of torchaudio to install if you use a different version of torch.

(test-icefall) kuangfangjun:~$ pip install torch==1.13.0+cu116 torchaudio==0.13.0+cu116 -
→˓f https://download.pytorch.org/whl/torch_stable.html

Looking in links: https://download.pytorch.org/whl/torch_stable.html
Collecting torch==1.13.0+cu116
Downloading https://download.pytorch.org/whl/cu116/torch-1.13.0%2Bcu116-cp38-cp38-

→˓linux_x86_64.whl (1983.0 MB)
________________________________________ 2.0/2.0 GB 764.4 kB/s eta 0:00:00

Collecting torchaudio==0.13.0+cu116
Downloading https://download.pytorch.org/whl/cu116/torchaudio-0.13.0%2Bcu116-cp38-cp38-

→˓linux_x86_64.whl (4.2 MB)
________________________________________ 4.2/4.2 MB 1.3 MB/s eta 0:00:00

Requirement already satisfied: typing-extensions in /star-fj/fangjun/test-icefall/lib/
→˓python3.8/site-packages (from torch==1.13.0+cu116) (4.7.1)
Installing collected packages: torch, torchaudio
Successfully installed torch-1.13.0+cu116 torchaudio-0.13.0+cu116

Verify that torch and torchaudio are successfully installed:

(test-icefall) kuangfangjun:~$ python3 -c "import torch; print(torch.__version__)"

1.13.0+cu116

(test-icefall) kuangfangjun:~$ python3 -c "import torchaudio; print(torchaudio.__version_
→˓_)"

0.13.0+cu116

2.6.4 (4) Install k2

We will install k2 from pre-compiled wheels by following https://k2-fsa.github.io/k2/installation/from_wheels.html

(test-icefall) kuangfangjun:~$ pip install k2==1.24.3.dev20230725+cuda11.6.torch1.13.0 -
→˓f https://k2-fsa.github.io/k2/cuda.html

Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Looking in links: https://k2-fsa.github.io/k2/cuda.html
Collecting k2==1.24.3.dev20230725+cuda11.6.torch1.13.0
Downloading https://huggingface.co/csukuangfj/k2/resolve/main/ubuntu-cuda/k2-1.24.3.

→˓dev20230725%2Bcuda11.6.torch1.13.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_
→˓64.whl (104.3 MB)

________________________________________ 104.3/104.3 MB 5.1 MB/s eta 0:00:00
(continues on next page)
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Requirement already satisfied: torch==1.13.0 in /star-fj/fangjun/test-icefall/lib/
→˓python3.8/site-packages (from k2==1.24.3.dev20230725+cuda11.6.torch1.13.0) (1.13.
→˓0+cu116)
Collecting graphviz
Using cached https://pypi.tuna.tsinghua.edu.cn/packages/de/5e/

→˓fcbb22c68208d39edff467809d06c9d81d7d27426460ebc598e55130c1aa/graphviz-0.20.1-py3-none-
→˓any.whl (47 kB)
Requirement already satisfied: typing-extensions in /star-fj/fangjun/test-icefall/lib/
→˓python3.8/site-packages (from torch==1.13.0->k2==1.24.3.dev20230725+cuda11.6.torch1.13.
→˓0) (4.7.1)
Installing collected packages: graphviz, k2
Successfully installed graphviz-0.20.1 k2-1.24.3.dev20230725+cuda11.6.torch1.13.0

Hint: Please refer to https://k2-fsa.github.io/k2/cuda.html for the available pre-compiled wheels about k2.

Verify that k2 has been installed successfully:

(test-icefall) kuangfangjun:~$ python3 -m k2.version

Collecting environment information...

k2 version: 1.24.3
Build type: Release
Git SHA1: 4c05309499a08454997adf500b56dcc629e35ae5
Git date: Tue Jul 25 16:23:36 2023
Cuda used to build k2: 11.6
cuDNN used to build k2: 8.3.2
Python version used to build k2: 3.8
OS used to build k2: CentOS Linux release 7.9.2009 (Core)
CMake version: 3.27.0
GCC version: 9.3.1
CMAKE_CUDA_FLAGS: -Wno-deprecated-gpu-targets -lineinfo --expt-extended-lambda -use_
→˓fast_math -Xptxas=-w --expt-extended-lambda -gencode arch=compute_35,code=sm_35 -
→˓lineinfo --expt-extended-lambda -use_fast_math -Xptxas=-w --expt-extended-lambda -
→˓gencode arch=compute_50,code=sm_50 -lineinfo --expt-extended-lambda -use_fast_math -
→˓Xptxas=-w --expt-extended-lambda -gencode arch=compute_60,code=sm_60 -lineinfo --
→˓expt-extended-lambda -use_fast_math -Xptxas=-w --expt-extended-lambda -gencode␣
→˓arch=compute_61,code=sm_61 -lineinfo --expt-extended-lambda -use_fast_math -Xptxas=-w␣
→˓ --expt-extended-lambda -gencode arch=compute_70,code=sm_70 -lineinfo --expt-extended-
→˓lambda -use_fast_math -Xptxas=-w --expt-extended-lambda -gencode arch=compute_75,
→˓code=sm_75 -lineinfo --expt-extended-lambda -use_fast_math -Xptxas=-w --expt-
→˓extended-lambda -gencode arch=compute_80,code=sm_80 -lineinfo --expt-extended-lambda -
→˓use_fast_math -Xptxas=-w --expt-extended-lambda -gencode arch=compute_86,code=sm_86 -
→˓DONNX_NAMESPACE=onnx_c2 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,
→˓code=sm_50 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60 -
→˓gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode␣
→˓arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_
→˓86,code=sm_86 -gencode arch=compute_86,code=compute_86 -Xcudafe --diag_suppress=cc_
→˓clobber_ignored,--diag_suppress=integer_sign_change,--diag_suppress=useless_using_
→˓declaration,--diag_suppress=set_but_not_used,--diag_suppress=field_without_dll_
→˓interface,--diag_suppress=base_class_has_different_dll_interface,--diag_suppress=dll_

(continues on next page)
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→˓interface_conflict_none_assumed,--diag_suppress=dll_interface_conflict_dllexport_
→˓assumed,--diag_suppress=implicit_return_from_non_void_function,--diag_
→˓suppress=unsigned_compare_with_zero,--diag_suppress=declared_but_not_referenced,--diag_
→˓suppress=bad_friend_decl --expt-relaxed-constexpr --expt-extended-lambda -D_GLIBCXX_
→˓USE_CXX11_ABI=0 --compiler-options -Wall --compiler-options -Wno-strict-overflow --
→˓compiler-options -Wno-unknown-pragmas
CMAKE_CXX_FLAGS: -D_GLIBCXX_USE_CXX11_ABI=0 -Wno-unused-variable -Wno-strict-overflow
PyTorch version used to build k2: 1.13.0+cu116
PyTorch is using Cuda: 11.6
NVTX enabled: True
With CUDA: True
Disable debug: True
Sync kernels : False
Disable checks: False
Max cpu memory allocate: 214748364800 bytes (or 200.0 GB)
k2 abort: False
__file__: /star-fj/fangjun/test-icefall/lib/python3.8/site-packages/k2/version/version.py
_k2.__file__: /star-fj/fangjun/test-icefall/lib/python3.8/site-packages/_k2.cpython-38-
→˓x86_64-linux-gnu.so

2.6.5 (5) Install lhotse

(test-icefall) kuangfangjun:~$ pip install git+https://github.com/lhotse-speech/lhotse

Collecting git+https://github.com/lhotse-speech/lhotse
Cloning https://github.com/lhotse-speech/lhotse to /tmp/pip-req-build-vq12fd5i
Running command git clone --filter=blob:none --quiet https://github.com/lhotse-speech/

→˓lhotse /tmp/pip-req-build-vq12fd5i
Resolved https://github.com/lhotse-speech/lhotse to commit␣

→˓7640d663469b22cd0b36f3246ee9b849cd25e3b7
Installing build dependencies ... done
Getting requirements to build wheel ... done
Preparing metadata (pyproject.toml) ... done

Collecting cytoolz>=0.10.1
Downloading https://pypi.tuna.tsinghua.edu.cn/packages/1e/3b/

→˓a7828d575aa17fb7acaf1ced49a3655aa36dad7e16eb7e6a2e4df0dda76f/cytoolz-0.12.2-cp38-cp38-
manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB)

________________________________________ 2.0/2.0 MB 33.2 MB/s eta 0:00:00
Collecting pyyaml>=5.3.1
Downloading https://pypi.tuna.tsinghua.edu.cn/packages/c8/6b/

→˓6600ac24725c7388255b2f5add93f91e58a5d7efaf4af244fdbcc11a541b/PyYAML-6.0.1-cp38-cp38-ma
nylinux_2_17_x86_64.manylinux2014_x86_64.whl (736 kB)

________________________________________ 736.6/736.6 kB 38.6 MB/s eta 0:00:00
Collecting dataclasses
Downloading https://pypi.tuna.tsinghua.edu.cn/packages/26/2f/

→˓1095cdc2868052dd1e64520f7c0d5c8c550ad297e944e641dbf1ffbb9a5d/dataclasses-0.6-py3-none-
any.whl (14 kB)
Requirement already satisfied: torchaudio in ./test-icefall/lib/python3.8/site-packages␣
→˓(from lhotse==1.16.0.dev0+git.7640d66.clean) (0.13.0+cu116)
Collecting lilcom>=1.1.0

(continues on next page)
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Downloading https://pypi.tuna.tsinghua.edu.cn/packages/a8/65/
→˓df0a69c52bd085ca1ad4e5c4c1a5c680e25f9477d8e49316c4ff1e5084a4/lilcom-1.7-cp38-cp38-many
linux_2_17_x86_64.manylinux2014_x86_64.whl (87 kB)

________________________________________ 87.1/87.1 kB 8.7 MB/s eta 0:00:00
Collecting tqdm
Using cached https://pypi.tuna.tsinghua.edu.cn/packages/e6/02/

→˓a2cff6306177ae6bc73bc0665065de51dfb3b9db7373e122e2735faf0d97/tqdm-4.65.0-py3-none-any
.whl (77 kB)
Requirement already satisfied: numpy>=1.18.1 in ./test-icefall/lib/python3.8/site-
→˓packages (from lhotse==1.16.0.dev0+git.7640d66.clean) (1.24.4)
Collecting audioread>=2.1.9
Using cached https://pypi.tuna.tsinghua.edu.cn/packages/5d/cb/

→˓82a002441902dccbe427406785db07af10182245ee639ea9f4d92907c923/audioread-3.0.0.tar.gz (
377 kB)
Preparing metadata (setup.py) ... done

Collecting tabulate>=0.8.1
Using cached https://pypi.tuna.tsinghua.edu.cn/packages/40/44/

→˓4a5f08c96eb108af5cb50b41f76142f0afa346dfa99d5296fe7202a11854/tabulate-0.9.0-py3-none-
any.whl (35 kB)
Collecting click>=7.1.1
Downloading https://pypi.tuna.tsinghua.edu.cn/packages/1a/70/

→˓e63223f8116931d365993d4a6b7ef653a4d920b41d03de7c59499962821f/click-8.1.6-py3-none-any.
whl (97 kB)

________________________________________ 97.9/97.9 kB 8.4 MB/s eta 0:00:00
Collecting packaging
Using cached https://pypi.tuna.tsinghua.edu.cn/packages/ab/c3/

→˓57f0601a2d4fe15de7a553c00adbc901425661bf048f2a22dfc500caf121/packaging-23.1-py3-none-
any.whl (48 kB)
Collecting intervaltree>=3.1.0
Downloading https://pypi.tuna.tsinghua.edu.cn/packages/50/fb/

→˓396d568039d21344639db96d940d40eb62befe704ef849b27949ded5c3bb/intervaltree-3.1.0.tar.gz
(32 kB)
Preparing metadata (setup.py) ... done

Requirement already satisfied: torch in ./test-icefall/lib/python3.8/site-packages (from␣
→˓lhotse==1.16.0.dev0+git.7640d66.clean) (1.13.0+cu116)
Collecting SoundFile>=0.10
Downloading https://pypi.tuna.tsinghua.edu.cn/packages/ad/bd/

→˓0602167a213d9184fc688b1086dc6d374b7ae8c33eccf169f9b50ce6568c/soundfile-0.12.1-py2.py3-
none-manylinux_2_17_x86_64.whl (1.3 MB)

________________________________________ 1.3/1.3 MB 46.5 MB/s eta 0:00:00
Collecting toolz>=0.8.0
Using cached https://pypi.tuna.tsinghua.edu.cn/packages/7f/5c/

→˓922a3508f5bda2892be3df86c74f9cf1e01217c2b1f8a0ac4841d903e3e9/toolz-0.12.0-py3-none-any.
→˓whl (55 kB)
Collecting sortedcontainers<3.0,>=2.0
Using cached https://pypi.tuna.tsinghua.edu.cn/packages/32/46/

→˓9cb0e58b2deb7f82b84065f37f3bffeb12413f947f9388e4cac22c4621ce/sortedcontainers-2.4.0-
→˓py2.py3-none-any.whl (29 kB)
Collecting cffi>=1.0
Using cached https://pypi.tuna.tsinghua.edu.cn/packages/b7/8b/

→˓06f30caa03b5b3ac006de4f93478dbd0239e2a16566d81a106c322dc4f79/cffi-1.15.1-cp38-cp38-
→˓manylinux_2_17_x86_64.manylinux2014_x86_64.whl (442 kB)
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Requirement already satisfied: typing-extensions in ./test-icefall/lib/python3.8/site-
→˓packages (from torch->lhotse==1.16.0.dev0+git.7640d66.clean) (4.7.1)
Collecting pycparser
Using cached https://pypi.tuna.tsinghua.edu.cn/packages/62/d5/

→˓5f610ebe421e85889f2e55e33b7f9a6795bd982198517d912eb1c76e1a53/pycparser-2.21-py2.py3-
→˓none-any.whl (118 kB)
Building wheels for collected packages: lhotse, audioread, intervaltree
Building wheel for lhotse (pyproject.toml) ... done
Created wheel for lhotse: filename=lhotse-1.16.0.dev0+git.7640d66.clean-py3-none-any.

→˓whl size=687627 sha256=cbf0a4d2d0b639b33b91637a4175bc251d6a021a069644ecb1a9f2b3a83d072a
Stored in directory: /tmp/pip-ephem-wheel-cache-wwtk90_m/wheels/7f/7a/8e/

→˓a0bf241336e2e3cb573e1e21e5600952d49f5162454f2e612f
Building wheel for audioread (setup.py) ... done
Created wheel for audioread: filename=audioread-3.0.0-py3-none-any.whl size=23704␣

→˓sha256=5e2d3537c96ce9cf0f645a654c671163707bf8cb8d9e358d0e2b0939a85ff4c2
Stored in directory: /star-fj/fangjun/.cache/pip/wheels/e2/c3/9c/

→˓f19ae5a03f8862d9f0776b0c0570f1fdd60a119d90954e3f39
Building wheel for intervaltree (setup.py) ... done
Created wheel for intervaltree: filename=intervaltree-3.1.0-py2.py3-none-any.whl␣

→˓size=26098 sha256=2604170976cfffe0d2f678cb1a6e5b525f561cd50babe53d631a186734fec9f9
Stored in directory: /star-fj/fangjun/.cache/pip/wheels/f3/ed/2b/

→˓c179ebfad4e15452d6baef59737f27beb9bfb442e0620f7271
Successfully built lhotse audioread intervaltree
Installing collected packages: sortedcontainers, dataclasses, tqdm, toolz, tabulate,␣
→˓pyyaml, pycparser, packaging, lilcom, intervaltree, click, audioread, cytoolz, cffi,␣
→˓SoundFile, lhotse
Successfully installed SoundFile-0.12.1 audioread-3.0.0 cffi-1.15.1 click-8.1.6 cytoolz-
→˓0.12.2 dataclasses-0.6 intervaltree-3.1.0 lhotse-1.16.0.dev0+git.7640d66.clean lilcom-
→˓1.7 packaging-23.1 pycparser-2.21 pyyaml-6.0.1 sortedcontainers-2.4.0 tabulate-0.9.0␣
→˓toolz-0.12.0 tqdm-4.65.0

Verify that lhotse has been installed successfully:

(test-icefall) kuangfangjun:~$ python3 -c "import lhotse; print(lhotse.__version__)"

1.16.0.dev+git.7640d66.clean

2.6.6 (6) Download icefall

(test-icefall) kuangfangjun:~$ cd /tmp/

(test-icefall) kuangfangjun:tmp$ git clone https://github.com/k2-fsa/icefall

Cloning into 'icefall'...
remote: Enumerating objects: 12942, done.
remote: Counting objects: 100% (67/67), done.
remote: Compressing objects: 100% (56/56), done.
remote: Total 12942 (delta 17), reused 35 (delta 6), pack-reused 12875
Receiving objects: 100% (12942/12942), 14.77 MiB | 9.29 MiB/s, done.
Resolving deltas: 100% (8835/8835), done.

(continues on next page)
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(test-icefall) kuangfangjun:tmp$ cd icefall/

(test-icefall) kuangfangjun:icefall$ pip install -r ./requirements.txt

2.7 Test Your Installation

To test that your installation is successful, let us run the yesno recipe on CPU.

2.7.1 Data preparation

(test-icefall) kuangfangjun:icefall$ export PYTHONPATH=/tmp/icefall:$PYTHONPATH

(test-icefall) kuangfangjun:icefall$ cd /tmp/icefall

(test-icefall) kuangfangjun:icefall$ cd egs/yesno/ASR

(test-icefall) kuangfangjun:ASR$ ./prepare.sh

The log of running ./prepare.sh is:

2023-07-27 12:41:39 (prepare.sh:27:main) dl_dir: /tmp/icefall/egs/yesno/ASR/download
2023-07-27 12:41:39 (prepare.sh:30:main) Stage 0: Download data
/tmp/icefall/egs/yesno/ASR/download/waves_yesno.tar.gz: 100%|____________________________
→˓_______________________| 4.70M/4.70M [00:00<00:00, 11.1MB/s]
2023-07-27 12:41:46 (prepare.sh:39:main) Stage 1: Prepare yesno manifest
2023-07-27 12:41:50 (prepare.sh:45:main) Stage 2: Compute fbank for yesno
2023-07-27 12:41:55,718 INFO [compute_fbank_yesno.py:65] Processing train
Extracting and storing features: 100%|___________________________________________________
→˓____________________________| 90/90 [00:01<00:00, 87.82it/s]
2023-07-27 12:41:56,778 INFO [compute_fbank_yesno.py:65] Processing test
Extracting and storing features: 100%|___________________________________________________
→˓___________________________| 30/30 [00:00<00:00, 256.92it/s]
2023-07-27 12:41:57 (prepare.sh:51:main) Stage 3: Prepare lang
2023-07-27 12:42:02 (prepare.sh:66:main) Stage 4: Prepare G
/project/kaldilm/csrc/arpa_file_parser.cc:void␣
→˓kaldilm::ArpaFileParser::Read(std::istream&):79
[I] Reading \data\ section.
/project/kaldilm/csrc/arpa_file_parser.cc:void␣
→˓kaldilm::ArpaFileParser::Read(std::istream&):140
[I] Reading \1-grams: section.
2023-07-27 12:42:02 (prepare.sh:92:main) Stage 5: Compile HLG
2023-07-27 12:42:07,275 INFO [compile_hlg.py:124] Processing data/lang_phone
2023-07-27 12:42:07,276 INFO [lexicon.py:171] Converting L.pt to Linv.pt
2023-07-27 12:42:07,309 INFO [compile_hlg.py:48] Building ctc_topo. max_token_id: 3
2023-07-27 12:42:07,310 INFO [compile_hlg.py:52] Loading G.fst.txt
2023-07-27 12:42:07,314 INFO [compile_hlg.py:62] Intersecting L and G
2023-07-27 12:42:07,323 INFO [compile_hlg.py:64] LG shape: (4, None)
2023-07-27 12:42:07,323 INFO [compile_hlg.py:66] Connecting LG
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2023-07-27 12:42:07,323 INFO [compile_hlg.py:68] LG shape after k2.connect: (4, None)
2023-07-27 12:42:07,323 INFO [compile_hlg.py:70] <class 'torch.Tensor'>
2023-07-27 12:42:07,323 INFO [compile_hlg.py:71] Determinizing LG
2023-07-27 12:42:07,341 INFO [compile_hlg.py:74] <class '_k2.ragged.RaggedTensor'>
2023-07-27 12:42:07,341 INFO [compile_hlg.py:76] Connecting LG after k2.determinize
2023-07-27 12:42:07,341 INFO [compile_hlg.py:79] Removing disambiguation symbols on LG
2023-07-27 12:42:07,354 INFO [compile_hlg.py:91] LG shape after k2.remove_epsilon: (6,␣
→˓None)
2023-07-27 12:42:07,445 INFO [compile_hlg.py:96] Arc sorting LG
2023-07-27 12:42:07,445 INFO [compile_hlg.py:99] Composing H and LG
2023-07-27 12:42:07,446 INFO [compile_hlg.py:106] Connecting LG
2023-07-27 12:42:07,446 INFO [compile_hlg.py:109] Arc sorting LG
2023-07-27 12:42:07,447 INFO [compile_hlg.py:111] HLG.shape: (8, None)
2023-07-27 12:42:07,447 INFO [compile_hlg.py:127] Saving HLG.pt to data/lang_phone

2.7.2 Training

Now let us run the training part:

(test-icefall) kuangfangjun:ASR$ export CUDA_VISIBLE_DEVICES=""

(test-icefall) kuangfangjun:ASR$ ./tdnn/train.py

Caution: We use export CUDA_VISIBLE_DEVICES="" so that icefall uses CPU even if there are GPUs available.

Hint: In case you get a Segmentation fault (core dump) error, please use:

export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python

See more at <https://github.com/k2-fsa/icefall/issues/674> if you are interested.

The training log is given below:

2023-07-27 12:50:51,936 INFO [train.py:481] Training started
2023-07-27 12:50:51,936 INFO [train.py:482] {'exp_dir': PosixPath('tdnn/exp'), 'lang_dir
→˓': PosixPath('data/lang_phone'), 'lr': 0.01, 'feature_dim': 23, 'weight_decay': 1e-06,
→˓'start_epoch': 0, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -
→˓1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 10, 'reset_interval':␣
→˓20, 'valid_interval': 10, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores':␣
→˓True, 'world_size': 1, 'master_port': 12354, 'tensorboard': True, 'num_epochs': 15,
→˓'seed': 42, 'feature_dir': PosixPath('data/fbank'), 'max_duration': 30.0, 'bucketing_
→˓sampler': False, 'num_buckets': 10, 'concatenate_cuts': False, 'duration_factor': 1.0,
→˓'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': False, 'return_cuts': True, 'num_
→˓workers': 2, 'env_info': {'k2-version': '1.24.3', 'k2-build-type': 'Release', 'k2-with-
→˓cuda': True, 'k2-git-sha1': '4c05309499a08454997adf500b56dcc629e35ae5', 'k2-git-date':
→˓'Tue Jul 25 16:23:36 2023', 'lhotse-version': '1.16.0.dev+git.7640d66.clean', 'torch-
→˓version': '1.13.0+cu116', 'torch-cuda-available': False, 'torch-cuda-version': '11.6',
→˓'python-version': '3.8', 'icefall-git-branch': 'master', 'icefall-git-sha1': '3fb0a43-

(continues on next page)
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→˓clean', 'icefall-git-date': 'Thu Jul 27 12:36:05 2023', 'icefall-path': '/tmp/icefall',
→˓ 'k2-path': '/star-fj/fangjun/test-icefall/lib/python3.8/site-packages/k2/__init__.py',
→˓ 'lhotse-path': '/star-fj/fangjun/test-icefall/lib/python3.8/site-packages/lhotse/__
→˓init__.py', 'hostname': 'de-74279-k2-train-1-1220091118-57c4d55446-sph26', 'IP address
→˓': '10.177.77.20'}}
2023-07-27 12:50:51,941 INFO [lexicon.py:168] Loading pre-compiled data/lang_phone/Linv.
→˓pt
2023-07-27 12:50:51,949 INFO [train.py:495] device: cpu
2023-07-27 12:50:51,965 INFO [asr_datamodule.py:146] About to get train cuts
2023-07-27 12:50:51,965 INFO [asr_datamodule.py:244] About to get train cuts
2023-07-27 12:50:51,967 INFO [asr_datamodule.py:149] About to create train dataset
2023-07-27 12:50:51,967 INFO [asr_datamodule.py:199] Using SingleCutSampler.
2023-07-27 12:50:51,967 INFO [asr_datamodule.py:205] About to create train dataloader
2023-07-27 12:50:51,968 INFO [asr_datamodule.py:218] About to get test cuts
2023-07-27 12:50:51,968 INFO [asr_datamodule.py:252] About to get test cuts
2023-07-27 12:50:52,565 INFO [train.py:422] Epoch 0, batch 0, loss[loss=1.065, over 2436.
→˓00 frames. ], tot_loss[loss=1.065, over 2436.00 frames. ], batch size: 4
2023-07-27 12:50:53,681 INFO [train.py:422] Epoch 0, batch 10, loss[loss=0.4561, over␣
→˓2828.00 frames. ], tot_loss[loss=0.7076, over 22192.90 frames.], batch size: 4
2023-07-27 12:50:54,167 INFO [train.py:444] Epoch 0, validation loss=0.9002, over 18067.
→˓00 frames.
2023-07-27 12:50:55,011 INFO [train.py:422] Epoch 0, batch 20, loss[loss=0.2555, over␣
→˓2695.00 frames. ], tot_loss[loss=0.484, over 34971.47 frames. ], batch size: 5
2023-07-27 12:50:55,331 INFO [train.py:444] Epoch 0, validation loss=0.4688, over 18067.
→˓00 frames.
2023-07-27 12:50:55,368 INFO [checkpoint.py:75] Saving checkpoint to tdnn/exp/epoch-0.pt
2023-07-27 12:50:55,633 INFO [train.py:422] Epoch 1, batch 0, loss[loss=0.2532, over␣
→˓2436.00 frames. ], tot_loss[loss=0.2532, over 2436.00 frames. ],
batch size: 4

2023-07-27 12:50:56,242 INFO [train.py:422] Epoch 1, batch 10, loss[loss=0.1139, over␣
→˓2828.00 frames. ], tot_loss[loss=0.1592, over 22192.90 frames.], batch size: 4
2023-07-27 12:50:56,522 INFO [train.py:444] Epoch 1, validation loss=0.1627, over 18067.
→˓00 frames.
2023-07-27 12:50:57,209 INFO [train.py:422] Epoch 1, batch 20, loss[loss=0.07055, over␣
→˓2695.00 frames. ], tot_loss[loss=0.1175, over 34971.47 frames.], batch size: 5
2023-07-27 12:50:57,600 INFO [train.py:444] Epoch 1, validation loss=0.07091, over 18067.
→˓00 frames.
2023-07-27 12:50:57,640 INFO [checkpoint.py:75] Saving checkpoint to tdnn/exp/epoch-1.pt
2023-07-27 12:50:57,847 INFO [train.py:422] Epoch 2, batch 0, loss[loss=0.07731, over␣
→˓2436.00 frames. ], tot_loss[loss=0.07731, over 2436.00 frames.], batch size: 4
2023-07-27 12:50:58,427 INFO [train.py:422] Epoch 2, batch 10, loss[loss=0.04391, over␣
→˓2828.00 frames. ], tot_loss[loss=0.05341, over 22192.90 frames. ], batch size: 4
2023-07-27 12:50:58,884 INFO [train.py:444] Epoch 2, validation loss=0.04384, over 18067.
→˓00 frames.
2023-07-27 12:50:59,387 INFO [train.py:422] Epoch 2, batch 20, loss[loss=0.03458, over␣
→˓2695.00 frames. ], tot_loss[loss=0.04616, over 34971.47 frames. ], batch size: 5
2023-07-27 12:50:59,707 INFO [train.py:444] Epoch 2, validation loss=0.03379, over 18067.
→˓00 frames.
2023-07-27 12:50:59,758 INFO [checkpoint.py:75] Saving checkpoint to tdnn/exp/epoch-2.pt

... ...

(continues on next page)
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2023-07-27 12:51:23,433 INFO [train.py:422] Epoch 13, batch 0, loss[loss=0.01054, over␣
→˓2436.00 frames. ], tot_loss[loss=0.01054, over 2436.00 frames. ], batch size: 4
2023-07-27 12:51:23,980 INFO [train.py:422] Epoch 13, batch 10, loss[loss=0.009014, over␣
→˓2828.00 frames. ], tot_loss[loss=0.009974, over 22192.90 frames. ], batch size: 4
2023-07-27 12:51:24,489 INFO [train.py:444] Epoch 13, validation loss=0.01085, over␣
→˓18067.00 frames.
2023-07-27 12:51:25,258 INFO [train.py:422] Epoch 13, batch 20, loss[loss=0.01172, over␣
→˓2695.00 frames. ], tot_loss[loss=0.01055, over 34971.47 frames. ], batch size: 5
2023-07-27 12:51:25,621 INFO [train.py:444] Epoch 13, validation loss=0.01074, over␣
→˓18067.00 frames.
2023-07-27 12:51:25,699 INFO [checkpoint.py:75] Saving checkpoint to tdnn/exp/epoch-13.pt
2023-07-27 12:51:25,866 INFO [train.py:422] Epoch 14, batch 0, loss[loss=0.01044, over␣
→˓2436.00 frames. ], tot_loss[loss=0.01044, over 2436.00 frames. ], batch size: 4
2023-07-27 12:51:26,844 INFO [train.py:422] Epoch 14, batch 10, loss[loss=0.008942, over␣
→˓2828.00 frames. ], tot_loss[loss=0.01, over 22192.90 frames. ], batch size: 4
2023-07-27 12:51:27,221 INFO [train.py:444] Epoch 14, validation loss=0.01082, over␣
→˓18067.00 frames.
2023-07-27 12:51:27,970 INFO [train.py:422] Epoch 14, batch 20, loss[loss=0.01169, over␣
→˓2695.00 frames. ], tot_loss[loss=0.01054, over 34971.47 frames. ], batch size: 5
2023-07-27 12:51:28,247 INFO [train.py:444] Epoch 14, validation loss=0.01073, over␣
→˓18067.00 frames.
2023-07-27 12:51:28,323 INFO [checkpoint.py:75] Saving checkpoint to tdnn/exp/epoch-14.pt
2023-07-27 12:51:28,326 INFO [train.py:555] Done!

2.7.3 Decoding

Let us use the trained model to decode the test set:

(test-icefall) kuangfangjun:ASR$ ./tdnn/decode.py

2023-07-27 12:55:12,840 INFO [decode.py:263] Decoding started
2023-07-27 12:55:12,840 INFO [decode.py:264] {'exp_dir': PosixPath('tdnn/exp'), 'lang_dir
→˓': PosixPath('data/lang_phone'), 'lm_dir': PosixPath('data/lm'), 'feature_dim': 23,
→˓'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states':␣
→˓10000, 'use_double_scores': True, 'epoch': 14, 'avg': 2, 'export': False, 'feature_dir
→˓': PosixPath('data/fbank'), 'max_duration': 30.0, 'bucketing_sampler': False, 'num_
→˓buckets': 10, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_
→˓fly_feats': False, 'shuffle': False, 'return_cuts': True, 'num_workers': 2, 'env_info
→˓': {'k2-version': '1.24.3', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-
→˓sha1': '4c05309499a08454997adf500b56dcc629e35ae5', 'k2-git-date': 'Tue Jul 25 16:23:36␣
→˓2023', 'lhotse-version': '1.16.0.dev+git.7640d66.clean', 'torch-version': '1.13.0+cu116
→˓', 'torch-cuda-available': False, 'torch-cuda-version': '11.6', 'python-version': '3.8
→˓', 'icefall-git-branch': 'master', 'icefall-git-sha1': '3fb0a43-clean', 'icefall-git-
→˓date': 'Thu Jul 27 12:36:05 2023', 'icefall-path': '/tmp/icefall', 'k2-path': '/star-
→˓fj/fangjun/test-icefall/lib/python3.8/site-packages/k2/__init__.py', 'lhotse-path': '/
→˓star-fj/fangjun/test-icefall/lib/python3.8/site-packages/lhotse/__init__.py', 'hostname
→˓': 'de-74279-k2-train-1-1220091118-57c4d55446-sph26', 'IP address': '10.177.77.20'}}
2023-07-27 12:55:12,841 INFO [lexicon.py:168] Loading pre-compiled data/lang_phone/Linv.
→˓pt
2023-07-27 12:55:12,855 INFO [decode.py:273] device: cpu
2023-07-27 12:55:12,868 INFO [decode.py:291] averaging ['tdnn/exp/epoch-13.pt', 'tdnn/

(continues on next page)
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→˓exp/epoch-14.pt']
2023-07-27 12:55:12,882 INFO [asr_datamodule.py:218] About to get test cuts
2023-07-27 12:55:12,883 INFO [asr_datamodule.py:252] About to get test cuts
2023-07-27 12:55:13,157 INFO [decode.py:204] batch 0/?, cuts processed until now is 4
2023-07-27 12:55:13,701 INFO [decode.py:241] The transcripts are stored in tdnn/exp/
→˓recogs-test_set.txt
2023-07-27 12:55:13,702 INFO [utils.py:564] [test_set] %WER 0.42% [1 / 240, 0 ins, 1 del,
→˓ 0 sub ]
2023-07-27 12:55:13,704 INFO [decode.py:249] Wrote detailed error stats to tdnn/exp/errs-
→˓test_set.txt
2023-07-27 12:55:13,704 INFO [decode.py:316] Done!

Congratulations! You have successfully setup the environment and have run the first recipe in icefall.

Have fun with icefall!

2.8 YouTube Video

We provide the following YouTube video showing how to install icefall. It also shows how to debug various problems
that you may encounter while using icefall.

Note: To get the latest news of next-gen Kaldi, please subscribe the following YouTube channel by Nadira Povey:

https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw

https://youtu.be/LVmrBD0tLfE
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THREE

DOCKER

This section describes how to use pre-built docker images to run icefall.

Hint: If you only have CPUs available, you can still use the pre-built docker images.

3.1 Introduction

We have pre-built docker images hosted at the following address:

https://hub.docker.com/repository/docker/k2fsa/icefall/general

You can find the Dockerfile at https://github.com/k2-fsa/icefall/tree/master/docker.
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We describe the following items in this section:

• How to view available tags

• How to download pre-built docker images

• How to run the yesno recipe within a docker container on CPU

3.2 View available tags

You can use the following command to view available tags:

curl -s 'https://registry.hub.docker.com/v2/repositories/k2fsa/icefall/tags/'|jq '.
→˓"results"[]["name"]'

which will give you something like below:

"torch2.0.0-cuda11.7"
"torch1.12.1-cuda11.3"
"torch1.9.0-cuda10.2"
"torch1.13.0-cuda11.6"

Hint: Available tags will be updated when there are new releases of torch.

Please select an appropriate combination of torch and CUDA.

3.3 Download a docker image

Suppose that you select the tag torch1.13.0-cuda11.6, you can use the following command to download it:

sudo docker image pull k2fsa/icefall:torch1.13.0-cuda11.6

3.4 Run a docker image with GPU

sudo docker run --gpus all --rm -it k2fsa/icefall:torch1.13.0-cuda11.6 /bin/bash

3.5 Run a docker image with CPU

sudo docker run --rm -it k2fsa/icefall:torch1.13.0-cuda11.6 /bin/bash
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3.6 Run yesno within a docker container

After starting the container, the following interface is presented:

root@60c947eac59c:/workspace/icefall#

It shows the current user is root and the current working directory is /workspace/icefall.

3.6.1 Update the code

Please first run:

root@60c947eac59c:/workspace/icefall# git pull

so that your local copy contains the latest code.

3.6.2 Data preparation

Now we can use

root@60c947eac59c:/workspace/icefall# cd egs/yesno/ASR/

to switch to the yesno recipe and run

root@60c947eac59c:/workspace/icefall/egs/yesno/ASR# ./prepare.sh

Hint:
If you are running without GPU, it may report the following error:

File "/opt/conda/lib/python3.9/site-packages/k2/__init__.py", line 23,␣
→˓in <module>
from _k2 import DeterminizeWeightPushingType

ImportError: libcuda.so.1: cannot open shared object file: No such␣
→˓file or directory

We can use the following command to fix it:

root@60c947eac59c:/workspace/icefall/egs/yesno/ASR# ln -s /opt/conda/lib/stubs/
→˓libcuda.so /opt/conda/lib/stubs/libcuda.so.1

The logs of running ./prepare.sh are listed below:
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3.6.3 Training

After preparing the data, we can start training with the following command

root@60c947eac59c:/workspace/icefall/egs/yesno/ASR# ./tdnn/train.py

All of the training logs are given below:

Hint: It is running on CPU and it takes only 16 seconds for this run.

3.6.4 Decoding

After training, we can decode the trained model with

root@60c947eac59c:/workspace/icefall/egs/yesno/ASR# ./tdnn/decode.py

The decoding logs are given below:

2023-08-01 02:06:22,400 INFO [decode.py:263] Decoding started
2023-08-01 02:06:22,400 INFO [decode.py:264] {'exp_dir': PosixPath('tdnn/exp'), 'lang_dir
→˓': PosixPath('data/lang_phone'), 'lm_dir': PosixPath('data/lm'), 'feature_dim': 23,
→˓'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states':␣
→˓10000, 'use_double_scores': True, 'epoch': 14, 'avg': 2, 'export': False, 'feature_dir
→˓': PosixPath('data/fbank'), 'max_duration': 30.0, 'bucketing_sampler': False, 'num_
→˓buckets': 10, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_
→˓fly_feats': False, 'shuffle': False, 'return_cuts': True, 'num_workers': 2, 'env_info
→˓': {'k2-version': '1.24.3', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-
→˓sha1': '4c05309499a08454997adf500b56dcc629e35ae5', 'k2-git-date': 'Tue Jul 25 16:23:36␣
→˓2023', 'lhotse-version': '1.16.0.dev+git.7640d663.clean', 'torch-version': '1.13.0',
→˓'torch-cuda-available': False, 'torch-cuda-version': '11.6', 'python-version': '3.9',
→˓'icefall-git-branch': 'master', 'icefall-git-sha1': '375520d-clean', 'icefall-git-date
→˓': 'Fri Jul 28 07:43:08 2023', 'icefall-path': '/workspace/icefall', 'k2-path': '/opt/
→˓conda/lib/python3.9/site-packages/k2/__init__.py', 'lhotse-path': '/opt/conda/lib/
→˓python3.9/site-packages/lhotse/__init__.py', 'hostname': '60c947eac59c', 'IP address':
→˓'172.17.0.2'}}
2023-08-01 02:06:22,401 INFO [lexicon.py:168] Loading pre-compiled data/lang_phone/Linv.
→˓pt
2023-08-01 02:06:22,403 INFO [decode.py:273] device: cpu
2023-08-01 02:06:22,406 INFO [decode.py:291] averaging ['tdnn/exp/epoch-13.pt', 'tdnn/
→˓exp/epoch-14.pt']
2023-08-01 02:06:22,424 INFO [asr_datamodule.py:218] About to get test cuts
2023-08-01 02:06:22,425 INFO [asr_datamodule.py:252] About to get test cuts
2023-08-01 02:06:22,504 INFO [decode.py:204] batch 0/?, cuts processed until now is 4
[W NNPACK.cpp:53] Could not initialize NNPACK! Reason: Unsupported hardware.
2023-08-01 02:06:22,687 INFO [decode.py:241] The transcripts are stored in tdnn/exp/
→˓recogs-test_set.txt
2023-08-01 02:06:22,688 INFO [utils.py:564] [test_set] %WER 0.42% [1 / 240, 0 ins, 1 del,
→˓ 0 sub ]
2023-08-01 02:06:22,690 INFO [decode.py:249] Wrote detailed error stats to tdnn/exp/errs-
→˓test_set.txt
2023-08-01 02:06:22,690 INFO [decode.py:316] Done!
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Congratulations! You have finished successfully running icefall within a docker container.
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CHAPTER

FOUR

FREQUENTLY ASKED QUESTIONS (FAQS)

In this section, we collect issues reported by users and post the corresponding solutions.

4.1 OSError: libtorch_hip.so: cannot open shared object file: no
such file or directory

One user is using the following code to install torch and torchaudio:

pip install \
torch==1.10.0+cu111 \
torchvision==0.11.0+cu111 \
torchaudio==0.10.0 \
-f https://download.pytorch.org/whl/torch_stable.html

and it throws the following error when running tdnn/train.py:

OSError: libtorch_hip.so: cannot open shared object file: no such file or directory

The fix is to specify the CUDA version while installing torchaudio. That is, change torchaudio==0.10.0 to
torchaudio==0.10.0+cu11`. Therefore, the correct command is:

pip install \
torch==1.10.0+cu111 \
torchvision==0.11.0+cu111 \
torchaudio==0.10.0+cu111 \
-f https://download.pytorch.org/whl/torch_stable.html

4.2 AttributeError: module ‘distutils’ has no attribute ‘version’

The error log is:

Traceback (most recent call last):
File "./tdnn/train.py", line 14, in <module>
from asr_datamodule import YesNoAsrDataModule

File "/home/xxx/code/next-gen-kaldi/icefall/egs/yesno/ASR/tdnn/asr_datamodule.py",␣
→˓line 34, in <module>
from icefall.dataset.datamodule import DataModule

File "/home/xxx/code/next-gen-kaldi/icefall/icefall/__init__.py", line 3, in <module>
(continues on next page)
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from . import (
File "/home/xxx/code/next-gen-kaldi/icefall/icefall/decode.py", line 23, in <module>
from icefall.utils import add_eos, add_sos, get_texts

File "/home/xxx/code/next-gen-kaldi/icefall/icefall/utils.py", line 39, in <module>
from torch.utils.tensorboard import SummaryWriter

File "/home/xxx/tool/miniconda3/envs/yyy/lib/python3.8/site-packages/torch/utils/
→˓tensorboard/__init__.py", line 4, in <module>

LooseVersion = distutils.version.LooseVersion
AttributeError: module 'distutils' has no attribute 'version'

The fix is:

pip uninstall setuptools

pip install setuptools==58.0.4

4.3 ImportError: libpython3.10.so.1.0: cannot open shared object
file: No such file or directory

If you are using conda and encounter the following issue:

Traceback (most recent call last):
File "/k2-dev/yangyifan/anaconda3/envs/icefall/lib/python3.10/site-packages/k2-1.23.3.

→˓dev20230112+cuda11.6.torch1.13.1-py3.10-linux-x86_64.egg/k2/__init__.py", line 24, in
→˓<module>

from _k2 import DeterminizeWeightPushingType
ImportError: libpython3.10.so.1.0: cannot open shared object file: No such file or␣
→˓directory

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File "/k2-dev/yangyifan/icefall/egs/librispeech/ASR/./pruned_transducer_stateless7_ctc_

→˓bs/decode.py", line 104, in <module>
import k2

File "/k2-dev/yangyifan/anaconda3/envs/icefall/lib/python3.10/site-packages/k2-1.23.3.
→˓dev20230112+cuda11.6.torch1.13.1-py3.10-linux-x86_64.egg/k2/__init__.py", line 30, in
→˓<module>

raise ImportError(
ImportError: libpython3.10.so.1.0: cannot open shared object file: No such file or␣
→˓directory
Note: If you're using anaconda and importing k2 on MacOS,

you can probably fix this by setting the environment variable:
export DYLD_LIBRARY_PATH=$CONDA_PREFIX/lib/python3.10/site-packages:$DYLD_LIBRARY_PATH

Please first try to find where libpython3.10.so.1.0 locates.

For instance,

cd $CONDA_PREFIX/lib
find . -name "libpython*"
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If you are able to find it inside $CODNA_PREFIX/lib, please set the following environment variable:

export LD_LIBRARY_PATH=$CONDA_PREFIX/lib:$LD_LIBRARY_PATH
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CHAPTER

FIVE

MODEL EXPORT

In this section, we describe various ways to export models.

5.1 Export model.state_dict()

5.1.1 When to use it

During model training, we save checkpoints periodically to disk.

A checkpoint contains the following information:

• model.state_dict()

• optimizer.state_dict()

• and some other information related to training

When we need to resume the training process from some point, we need a checkpoint. However, if we want to publish
the model for inference, then only model.state_dict() is needed. In this case, we need to strip all other information
except model.state_dict() to reduce the file size of the published model.

5.1.2 How to export

Every recipe contains a file export.py that you can use to export model.state_dict() by taking some checkpoints
as inputs.

Hint: Each export.py contains well-documented usage information.

In the following, we use https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/pruned_transducer_
stateless3/export.py as an example.

Note: The steps for other recipes are almost the same.

cd egs/librispeech/ASR

./pruned_transducer_stateless3/export.py \
--exp-dir ./pruned_transducer_stateless3/exp \
--tokens data/lang_bpe_500/tokens.txt \

(continues on next page)
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(continued from previous page)

--epoch 20 \
--avg 10

will generate a file pruned_transducer_stateless3/exp/pretrained.pt, which is a dict containing {"model":
model.state_dict()} saved by torch.save().

5.1.3 How to use the exported model

For each recipe, we provide pretrained models hosted on huggingface. You can find links to pretrained models in
RESULTS.md of each dataset.

In the following, we demonstrate how to use the pretrained model from https://huggingface.co/csukuangfj/
icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13.

cd egs/librispeech/ASR

git lfs install
git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-
→˓stateless3-2022-05-13

After cloning the repo with git lfs, you will find several files in the folder
icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/exp that have a prefix
pretrained-. Those files contain model.state_dict() exported by the above export.py.

In each recipe, there is also a file pretrained.py, which can use pretrained-xxx.pt to decode waves. The fol-
lowing is an example:

cd egs/librispeech/ASR

./pruned_transducer_stateless3/pretrained.py \
--checkpoint ./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/exp/

→˓pretrained-iter-1224000-avg-14.pt \
--tokens ./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/data/lang_

→˓bpe_500/tokens.txt \
--method greedy_search \
./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/test_wavs/1089-

→˓134686-0001.wav \
./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/test_wavs/1221-

→˓135766-0001.wav \
./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/test_wavs/1221-

→˓135766-0002.wav

The above commands show how to use the exported model with pretrained.py to decode multiple sound files. Its
output is given as follows for reference:

2022-10-13 19:09:02,233 INFO [pretrained.py:265] {'best_train_loss': inf, 'best_valid_
→˓loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_
→˓interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80,
→˓'subsampling_factor': 4, 'encoder_dim': 512, 'nhead': 8, 'dim_feedforward': 2048, 'num_
→˓encoder_layers': 12, 'decoder_dim': 512, 'joiner_dim': 512, 'model_warm_step': 3000,
→˓'env_info': {'k2-version': '1.21', 'k2-build-type': 'Release', 'k2-with-cuda': True,
→˓'k2-git-sha1': '4810e00d8738f1a21278b0156a42ff396a2d40ac', 'k2-git-date': 'Fri Oct 7␣
→˓19:35:03 2022', 'lhotse-version': '1.3.0.dev+missing.version.file', 'torch-version':

(continues on next page)
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(continued from previous page)

→˓'1.10.0+cu102', 'torch-cuda-available': False, 'torch-cuda-version': '10.2', 'python-
→˓version': '3.8', 'icefall-git-branch': 'onnx-doc-1013', 'icefall-git-sha1': 'c39cba5-
→˓dirty', 'icefall-git-date': 'Thu Oct 13 15:17:20 2022', 'icefall-path': '/k2-dev/
→˓fangjun/open-source/icefall-master', 'k2-path': '/k2-dev/fangjun/open-source/k2-master/
→˓k2/python/k2/__init__.py', 'lhotse-path': '/ceph-fj/fangjun/open-source-2/lhotse-jsonl/
→˓lhotse/__init__.py', 'hostname': 'de-74279-k2-test-4-0324160024-65bfd8b584-jjlbn', 'IP␣
→˓address': '10.177.74.203'}, 'checkpoint': './icefall-asr-librispeech-pruned-transducer-
→˓stateless3-2022-05-13/exp/pretrained-iter-1224000-avg-14.pt', 'bpe_model': './icefall-
→˓asr-librispeech-pruned-transducer-stateless3-2022-05-13/data/lang_bpe_500/bpe.model',
→˓'method': 'greedy_search', 'sound_files': ['./icefall-asr-librispeech-pruned-
→˓transducer-stateless3-2022-05-13/test_wavs/1089-134686-0001.wav', './icefall-asr-
→˓librispeech-pruned-transducer-stateless3-2022-05-13/test_wavs/1221-135766-0001.wav', '.
→˓/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/test_wavs/1221-135766-
→˓0002.wav'], 'sample_rate': 16000, 'beam_size': 4, 'beam': 4, 'max_contexts': 4, 'max_
→˓states': 8, 'context_size': 2, 'max_sym_per_frame': 1, 'simulate_streaming': False,
→˓'decode_chunk_size': 16, 'left_context': 64, 'dynamic_chunk_training': False, 'causal_
→˓convolution': False, 'short_chunk_size': 25, 'num_left_chunks': 4, 'blank_id': 0, 'unk_
→˓id': 2, 'vocab_size': 500}
2022-10-13 19:09:02,233 INFO [pretrained.py:271] device: cpu
2022-10-13 19:09:02,233 INFO [pretrained.py:273] Creating model
2022-10-13 19:09:02,612 INFO [train.py:458] Disable giga
2022-10-13 19:09:02,623 INFO [pretrained.py:277] Number of model parameters: 78648040
2022-10-13 19:09:02,951 INFO [pretrained.py:285] Constructing Fbank computer
2022-10-13 19:09:02,952 INFO [pretrained.py:295] Reading sound files: ['./icefall-asr-
→˓librispeech-pruned-transducer-stateless3-2022-05-13/test_wavs/1089-134686-0001.wav', '.
→˓/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/test_wavs/1221-135766-
→˓0001.wav', './icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/test_
→˓wavs/1221-135766-0002.wav']
2022-10-13 19:09:02,957 INFO [pretrained.py:301] Decoding started
2022-10-13 19:09:06,700 INFO [pretrained.py:329] Using greedy_search
2022-10-13 19:09:06,912 INFO [pretrained.py:388]
./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/test_wavs/1089-134686-
→˓0001.wav:
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER␣
→˓OF THE BROTHELS

./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/test_wavs/1221-135766-
→˓0001.wav:
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY␣
→˓CHILD WHOSE PLACE WAS ON THAT SAME DISHONORED BOSOM TO CONNECT HER PARENT FOREVER WITH␣
→˓THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN

./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/test_wavs/1221-135766-
→˓0002.wav:
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION

2022-10-13 19:09:06,912 INFO [pretrained.py:390] Decoding Done
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5.1.4 Use the exported model to run decode.py

When we publish the model, we always note down its WERs on some test dataset in RESULTS.md. This section
describes how to use the pretrained model to reproduce the WER.

cd egs/librispeech/ASR
git lfs install
git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-
→˓stateless3-2022-05-13

cd icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/exp
ln -s pretrained-iter-1224000-avg-14.pt epoch-9999.pt
cd ../..

We create a symlink with name epoch-9999.pt to pretrained-iter-1224000-avg-14.pt, so that we can pass
--epoch 9999 --avg 1 to decode.py in the following command:

./pruned_transducer_stateless3/decode.py \
--epoch 9999 \
--avg 1 \
--exp-dir ./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/exp \
--lang-dir ./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/data/

→˓lang_bpe_500 \
--max-duration 600 \
--decoding-method greedy_search

You will find the decoding results in ./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/
exp/greedy_search.

Caution: For some recipes, you also need to pass --use-averaged-model False to decode.py. The reason
is that the exported pretrained model is already the averaged one.

Hint: Before running decode.py, we assume that you have already run prepare.sh to prepare the test dataset.

5.2 Export model with torch.jit.trace()

In this section, we describe how to export a model via torch.jit.trace().

5.2.1 When to use it

If we want to use our trained model with torchscript, we can use torch.jit.trace().

Hint: See Export model with torch.jit.script() if you want to use torch.jit.script().
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5.2.2 How to export

We use https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/lstm_transducer_stateless2 as an example
in the following.

iter=468000
avg=16

cd egs/librispeech/ASR

./lstm_transducer_stateless2/export.py \
--exp-dir ./lstm_transducer_stateless2/exp \
--tokens data/lang_bpe_500/tokens.txt \
--iter $iter \
--avg $avg \
--jit-trace 1

It will generate three files inside lstm_transducer_stateless2/exp:

• encoder_jit_trace.pt

• decoder_jit_trace.pt

• joiner_jit_trace.pt

You can use https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/lstm_transducer_stateless2/jit_
pretrained.py to decode sound files with the following commands:

cd egs/librispeech/ASR
./lstm_transducer_stateless2/jit_pretrained.py \
--bpe-model ./data/lang_bpe_500/bpe.model \
--encoder-model-filename ./lstm_transducer_stateless2/exp/encoder_jit_trace.pt \
--decoder-model-filename ./lstm_transducer_stateless2/exp/decoder_jit_trace.pt \
--joiner-model-filename ./lstm_transducer_stateless2/exp/joiner_jit_trace.pt \
/path/to/foo.wav \
/path/to/bar.wav \
/path/to/baz.wav

5.2.3 How to use the exported models

Please refer to https://k2-fsa.github.io/sherpa/python/streaming_asr/lstm/index.html for its usage in sherpa. You can
also find pretrained models there.

5.3 Export model with torch.jit.script()

In this section, we describe how to export a model via torch.jit.script().
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5.3.1 When to use it

If we want to use our trained model with torchscript, we can use torch.jit.script().

Hint: See Export model with torch.jit.trace() if you want to use torch.jit.trace().

5.3.2 How to export

We use https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/pruned_transducer_stateless3 as an exam-
ple in the following.

cd egs/librispeech/ASR
epoch=14
avg=1

./pruned_transducer_stateless3/export.py \
--exp-dir ./pruned_transducer_stateless3/exp \
--tokens data/lang_bpe_500/tokens.txt \
--epoch $epoch \
--avg $avg \
--jit 1

It will generate a file cpu_jit.pt in pruned_transducer_stateless3/exp.

Caution: Don’t be confused by cpu in cpu_jit.pt. We move all parameters to CPU before saving it into a pt
file; that’s why we use cpu in the filename.

5.3.3 How to use the exported model

Please refer to the following pages for usage:

• https://k2-fsa.github.io/sherpa/python/streaming_asr/emformer/index.html

• https://k2-fsa.github.io/sherpa/python/streaming_asr/conv_emformer/index.html

• https://k2-fsa.github.io/sherpa/python/streaming_asr/conformer/index.html

• https://k2-fsa.github.io/sherpa/python/offline_asr/conformer/index.html

• https://k2-fsa.github.io/sherpa/cpp/offline_asr/gigaspeech.html

• https://k2-fsa.github.io/sherpa/cpp/offline_asr/wenetspeech.html
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5.4 Export to ONNX

In this section, we describe how to export models to ONNX.

Hint: Before you continue, please run:

pip install onnx

In each recipe, there is a file called export-onnx.py, which is used to export trained models to ONNX.

There is also a file named onnx_pretrained.py, which you can use the exported ONNX model in Python with
onnxruntime to decode sound files.

5.4.1 sherpa-onnx

We have a separate repository sherpa-onnx for deploying your exported models on various platforms such as:

• iOS

• Android

• Raspberry Pi

• Linux/macOS/Windows

Please see the documentation of sherpa-onnx for details:

https://k2-fsa.github.io/sherpa/onnx/index.html

5.4.2 Example

In the following, we demonstrate how to export a streaming Zipformer pre-trained model from https://huggingface.co/
csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11 to ONNX.

5.4.3 Download the pre-trained model

Hint: We assume you have installed git-lfs.

cd egs/librispeech/ASR

repo_url=https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-
→˓stateless7-streaming-2022-12-29
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
repo=$(basename $repo_url)

pushd $repo
git lfs pull --include "data/lang_bpe_500/bpe.model"
git lfs pull --include "exp/pretrained.pt"
cd exp
ln -s pretrained.pt epoch-99.pt
popd
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5.4.4 Export the model to ONNX

./pruned_transducer_stateless7_streaming/export-onnx.py \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--use-averaged-model 0 \
--epoch 99 \
--avg 1 \
--decode-chunk-len 32 \
--exp-dir $repo/exp/

Warning: export-onnx.py from different recipes has different options.

In the above example, --decode-chunk-len is specific for the streaming Zipformer. Other models won’t have
such an option.

It will generate the following 3 files in $repo/exp

• encoder-epoch-99-avg-1.onnx

• decoder-epoch-99-avg-1.onnx

• joiner-epoch-99-avg-1.onnx

5.4.5 Decode sound files with exported ONNX models

./pruned_transducer_stateless7_streaming/onnx_pretrained.py \
--encoder-model-filename $repo/exp/encoder-epoch-99-avg-1.onnx \
--decoder-model-filename $repo/exp/decoder-epoch-99-avg-1.onnx \
--joiner-model-filename $repo/exp/joiner-epoch-99-avg-1.onnx \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav

5.5 Export to ncnn

We support exporting the following models to ncnn:

• Zipformer transducer models

• LSTM transducer models

• ConvEmformer transducer models

We also provide sherpa-ncnn for performing speech recognition using ncnn with exported models. It has been tested
on the following platforms:

• Linux

• macOS

• Windows

• Android

• iOS
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• Raspberry Pi

• (MAIX-III AXera-Pi).

• RV1126

sherpa-ncnn is self-contained and can be statically linked to produce a binary containing everything needed. Please
refer to its documentation for details:

• https://k2-fsa.github.io/sherpa/ncnn/index.html

5.5.1 Export streaming Zipformer transducer models to ncnn

We use the pre-trained model from the following repository as an example:

https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29

We will show you step by step how to export it to ncnn and run it with sherpa-ncnn.

Hint: We use Ubuntu 18.04, torch 1.13, and Python 3.8 for testing.

Caution: Please use a more recent version of PyTorch. For instance, torch 1.8 may not work.

1. Download the pre-trained model

Hint: You have to install git-lfs before you continue.

cd egs/librispeech/ASR
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/Zengwei/icefall-asr-librispeech-
→˓pruned-transducer-stateless7-streaming-2022-12-29
cd icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29

git lfs pull --include "exp/pretrained.pt"
git lfs pull --include "data/lang_bpe_500/bpe.model"

cd ..

Note: We downloaded exp/pretrained-xxx.pt, not exp/cpu-jit_xxx.pt.

In the above code, we downloaded the pre-trained model into the directory egs/librispeech/ASR/
icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29.
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2. Install ncnn and pnnx

Please refer to 2. Install ncnn and pnnx .

3. Export the model via torch.jit.trace()

First, let us rename our pre-trained model:

cd egs/librispeech/ASR

cd icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/exp

ln -s pretrained.pt epoch-99.pt

cd ../..

Next, we use the following code to export our model:

dir=./icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29

./pruned_transducer_stateless7_streaming/export-for-ncnn.py \
--tokens $dir/data/lang_bpe_500/tokens.txt \
--exp-dir $dir/exp \
--use-averaged-model 0 \
--epoch 99 \
--avg 1 \
--decode-chunk-len 32 \
--num-left-chunks 4 \
--num-encoder-layers "2,4,3,2,4" \
--feedforward-dims "1024,1024,2048,2048,1024" \
--nhead "8,8,8,8,8" \
--encoder-dims "384,384,384,384,384" \
--attention-dims "192,192,192,192,192" \
--encoder-unmasked-dims "256,256,256,256,256" \
--zipformer-downsampling-factors "1,2,4,8,2" \
--cnn-module-kernels "31,31,31,31,31" \
--decoder-dim 512 \
--joiner-dim 512

Caution: If your model has different configuration parameters, please change them accordingly.

Hint: We have renamed our model to epoch-99.pt so that we can use --epoch 99. There is only one pre-trained
model, so we use --avg 1 --use-averaged-model 0.

If you have trained a model by yourself and if you have all checkpoints available, please first use decode.py to tune
--epoch --avg and select the best combination with with --use-averaged-model 1.

Note: You will see the following log output:
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2023-02-27 20:23:07,473 INFO [export-for-ncnn.py:246] device: cpu
2023-02-27 20:23:07,477 INFO [export-for-ncnn.py:255] {'best_train_loss': inf, 'best_
→˓valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0,
→˓ 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80,
→˓'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.23.4', 'k2-
→˓build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1':
→˓'62e404dd3f3a811d73e424199b3408e309c06e1a', 'k2-git-date': 'Mon Jan 30 10:26:16 2023',
→˓'lhotse-version': '1.12.0.dev+missing.version.file', 'torch-version': '1.10.0+cu102',
→˓'torch-cuda-available': True, 'torch-cuda-version': '10.2', 'python-version': '3.8',
→˓'icefall-git-branch': 'master', 'icefall-git-sha1': '6d7a559-clean', 'icefall-git-date
→˓': 'Thu Feb 16 19:47:54 2023', 'icefall-path': '/star-fj/fangjun/open-source/icefall-2
→˓', 'k2-path': '/star-fj/fangjun/open-source/k2/k2/python/k2/__init__.py', 'lhotse-path
→˓': '/star-fj/fangjun/open-source/lhotse/lhotse/__init__.py', 'hostname': 'de-74279-k2-
→˓train-3-1220120619-7695ff496b-s9n4w', 'IP address': '10.177.6.147'}, 'epoch': 99, 'iter
→˓': 0, 'avg': 1, 'exp_dir': PosixPath('icefall-asr-librispeech-pruned-transducer-
→˓stateless7-streaming-2022-12-29/exp'), 'bpe_model': './icefall-asr-librispeech-pruned-
→˓transducer-stateless7-streaming-2022-12-29/data/lang_bpe_500/bpe.model', 'context_size
→˓': 2, 'use_averaged_model': False, 'num_encoder_layers': '2,4,3,2,4', 'feedforward_dims
→˓': '1024,1024,2048,2048,1024', 'nhead': '8,8,8,8,8', 'encoder_dims': '384,384,384,384,
→˓384', 'attention_dims': '192,192,192,192,192', 'encoder_unmasked_dims': '256,256,256,
→˓256,256', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,
→˓31,31,31', 'decoder_dim': 512, 'joiner_dim': 512, 'short_chunk_size': 50, 'num_left_
→˓chunks': 4, 'decode_chunk_len': 32, 'blank_id': 0, 'vocab_size': 500}
2023-02-27 20:23:07,477 INFO [export-for-ncnn.py:257] About to create model
2023-02-27 20:23:08,023 INFO [zipformer2.py:419] At encoder stack 4, which has␣
→˓downsampling_factor=2, we will combine the outputs of layers 1 and 3, with␣
→˓downsampling_factors=2 and 8.
2023-02-27 20:23:08,037 INFO [checkpoint.py:112] Loading checkpoint from icefall-asr-
→˓librispeech-pruned-transducer-stateless7-streaming-2022-12-29/exp/epoch-99.pt
2023-02-27 20:23:08,655 INFO [export-for-ncnn.py:346] encoder parameters: 68944004
2023-02-27 20:23:08,655 INFO [export-for-ncnn.py:347] decoder parameters: 260096
2023-02-27 20:23:08,655 INFO [export-for-ncnn.py:348] joiner parameters: 716276
2023-02-27 20:23:08,656 INFO [export-for-ncnn.py:349] total parameters: 69920376
2023-02-27 20:23:08,656 INFO [export-for-ncnn.py:351] Using torch.jit.trace()
2023-02-27 20:23:08,656 INFO [export-for-ncnn.py:353] Exporting encoder
2023-02-27 20:23:08,656 INFO [export-for-ncnn.py:174] decode_chunk_len: 32
2023-02-27 20:23:08,656 INFO [export-for-ncnn.py:175] T: 39
/star-fj/fangjun/open-source/icefall-2/egs/librispeech/ASR/pruned_transducer_stateless7_
→˓streaming/zipformer2.py:1344: TracerWarning: Converting a tensor to a Python boolean␣
→˓might cause the trace to be incorrect. We can't record the data flow of Python values,␣
→˓so this value will be treated as a constant in the future. This means that the trace␣
→˓might not generalize to other inputs!
assert cached_len.size(0) == self.num_layers, (

/star-fj/fangjun/open-source/icefall-2/egs/librispeech/ASR/pruned_transducer_stateless7_
→˓streaming/zipformer2.py:1348: TracerWarning: Converting a tensor to a Python boolean␣
→˓might cause the trace to be incorrect. We can't record the data flow of Python values,␣
→˓so this value will be treated as a constant in the future. This means that the trace␣
→˓might not generalize to other inputs!
assert cached_avg.size(0) == self.num_layers, (

/star-fj/fangjun/open-source/icefall-2/egs/librispeech/ASR/pruned_transducer_stateless7_
→˓streaming/zipformer2.py:1352: TracerWarning: Converting a tensor to a Python boolean␣
→˓might cause the trace to be incorrect. We can't record the data flow of Python values,␣
→˓so this value will be treated as a constant in the future. This means that the trace␣
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→˓might not generalize to other inputs!
assert cached_key.size(0) == self.num_layers, (

/star-fj/fangjun/open-source/icefall-2/egs/librispeech/ASR/pruned_transducer_stateless7_
→˓streaming/zipformer2.py:1356: TracerWarning: Converting a tensor to a Python boolean␣
→˓might cause the trace to be incorrect. We can't record the data flow of Python values,␣
→˓so this value will be treated as a constant in the future. This means that the trace␣
→˓might not generalize to other inputs!
assert cached_val.size(0) == self.num_layers, (

/star-fj/fangjun/open-source/icefall-2/egs/librispeech/ASR/pruned_transducer_stateless7_
→˓streaming/zipformer2.py:1360: TracerWarning: Converting a tensor to a Python boolean␣
→˓might cause the trace to be incorrect. We can't record the data flow of Python values,␣
→˓so this value will be treated as a constant in the future. This means that the trace␣
→˓might not generalize to other inputs!
assert cached_val2.size(0) == self.num_layers, (

/star-fj/fangjun/open-source/icefall-2/egs/librispeech/ASR/pruned_transducer_stateless7_
→˓streaming/zipformer2.py:1364: TracerWarning: Converting a tensor to a Python boolean␣
→˓might cause the trace to be incorrect. We can't record the data flow of Python values,␣
→˓so this value will be treated as a constant in the future. This means that the trace␣
→˓might not generalize to other inputs!
assert cached_conv1.size(0) == self.num_layers, (

/star-fj/fangjun/open-source/icefall-2/egs/librispeech/ASR/pruned_transducer_stateless7_
→˓streaming/zipformer2.py:1368: TracerWarning: Converting a tensor to a Python boolean␣
→˓might cause the trace to be incorrect. We can't record the data flow of Python values,␣
→˓so this value will be treated as a constant in the future. This means that the trace␣
→˓might not generalize to other inputs!
assert cached_conv2.size(0) == self.num_layers, (

/star-fj/fangjun/open-source/icefall-2/egs/librispeech/ASR/pruned_transducer_stateless7_
→˓streaming/zipformer2.py:1373: TracerWarning: Converting a tensor to a Python boolean␣
→˓might cause the trace to be incorrect. We can't record the data flow of Python values,␣
→˓so this value will be treated as a constant in the future. This means that the trace␣
→˓might not generalize to other inputs!
assert self.left_context_len == cached_key.shape[1], (

/star-fj/fangjun/open-source/icefall-2/egs/librispeech/ASR/pruned_transducer_stateless7_
→˓streaming/zipformer2.py:1884: TracerWarning: Converting a tensor to a Python boolean␣
→˓might cause the trace to be incorrect. We can't record the data flow of Python values,␣
→˓so this value will be treated as a constant in the future. This means that the trace␣
→˓might not generalize to other inputs!
assert self.x_size == x.size(0), (self.x_size, x.size(0))

/star-fj/fangjun/open-source/icefall-2/egs/librispeech/ASR/pruned_transducer_stateless7_
→˓streaming/zipformer2.py:2442: TracerWarning: Converting a tensor to a Python boolean␣
→˓might cause the trace to be incorrect. We can't record the data flow of Python values,␣
→˓so this value will be treated as a constant in the future. This means that the trace␣
→˓might not generalize to other inputs!
assert cached_key.shape[0] == self.left_context_len, (

/star-fj/fangjun/open-source/icefall-2/egs/librispeech/ASR/pruned_transducer_stateless7_
→˓streaming/zipformer2.py:2449: TracerWarning: Converting a tensor to a Python boolean␣
→˓might cause the trace to be incorrect. We can't record the data flow of Python values,␣
→˓so this value will be treated as a constant in the future. This means that the trace␣
→˓might not generalize to other inputs!
assert cached_key.shape[0] == cached_val.shape[0], (

/star-fj/fangjun/open-source/icefall-2/egs/librispeech/ASR/pruned_transducer_stateless7_
→˓streaming/zipformer2.py:2469: TracerWarning: Converting a tensor to a Python boolean␣
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→˓might cause the trace to be incorrect. We can't record the data flow of Python values,␣
→˓so this value will be treated as a constant in the future. This means that the trace␣
→˓might not generalize to other inputs!
assert cached_key.shape[0] == left_context_len, (

/star-fj/fangjun/open-source/icefall-2/egs/librispeech/ASR/pruned_transducer_stateless7_
→˓streaming/zipformer2.py:2473: TracerWarning: Converting a tensor to a Python boolean␣
→˓might cause the trace to be incorrect. We can't record the data flow of Python values,␣
→˓so this value will be treated as a constant in the future. This means that the trace␣
→˓might not generalize to other inputs!
assert cached_val.shape[0] == left_context_len, (

/star-fj/fangjun/open-source/icefall-2/egs/librispeech/ASR/pruned_transducer_stateless7_
→˓streaming/zipformer2.py:2483: TracerWarning: Converting a tensor to a Python boolean␣
→˓might cause the trace to be incorrect. We can't record the data flow of Python values,␣
→˓so this value will be treated as a constant in the future. This means that the trace␣
→˓might not generalize to other inputs!
assert kv_len == k.shape[0], (kv_len, k.shape)

/star-fj/fangjun/open-source/icefall-2/egs/librispeech/ASR/pruned_transducer_stateless7_
→˓streaming/zipformer2.py:2570: TracerWarning: Converting a tensor to a Python boolean␣
→˓might cause the trace to be incorrect. We can't record the data flow of Python values,␣
→˓so this value will be treated as a constant in the future. This means that the trace␣
→˓might not generalize to other inputs!
assert list(attn_output.size()) == [bsz * num_heads, seq_len, head_dim // 2]

/star-fj/fangjun/open-source/icefall-2/egs/librispeech/ASR/pruned_transducer_stateless7_
→˓streaming/zipformer2.py:2926: TracerWarning: Converting a tensor to a Python boolean␣
→˓might cause the trace to be incorrect. We can't record the data flow of Python values,␣
→˓so this value will be treated as a constant in the future. This means that the trace␣
→˓might not generalize to other inputs!
assert cache.shape == (x.size(0), x.size(1), self.lorder), (

/star-fj/fangjun/open-source/icefall-2/egs/librispeech/ASR/pruned_transducer_stateless7_
→˓streaming/zipformer2.py:2652: TracerWarning: Converting a tensor to a Python boolean␣
→˓might cause the trace to be incorrect. We can't record the data flow of Python values,␣
→˓so this value will be treated as a constant in the future. This means that the trace␣
→˓might not generalize to other inputs!
assert x.shape[0] == self.x_size, (x.shape[0], self.x_size)

/star-fj/fangjun/open-source/icefall-2/egs/librispeech/ASR/pruned_transducer_stateless7_
→˓streaming/zipformer2.py:2653: TracerWarning: Converting a tensor to a Python boolean␣
→˓might cause the trace to be incorrect. We can't record the data flow of Python values,␣
→˓so this value will be treated as a constant in the future. This means that the trace␣
→˓might not generalize to other inputs!
assert x.shape[2] == self.embed_dim, (x.shape[2], self.embed_dim)

/star-fj/fangjun/open-source/icefall-2/egs/librispeech/ASR/pruned_transducer_stateless7_
→˓streaming/zipformer2.py:2666: TracerWarning: Converting a tensor to a Python boolean␣
→˓might cause the trace to be incorrect. We can't record the data flow of Python values,␣
→˓so this value will be treated as a constant in the future. This means that the trace␣
→˓might not generalize to other inputs!
assert cached_val.shape[0] == self.left_context_len, (

/star-fj/fangjun/open-source/icefall-2/egs/librispeech/ASR/pruned_transducer_stateless7_
→˓streaming/zipformer2.py:1543: TracerWarning: Converting a tensor to a Python boolean␣
→˓might cause the trace to be incorrect. We can't record the data flow of Python values,␣
→˓so this value will be treated as a constant in the future. This means that the trace␣
→˓might not generalize to other inputs!
assert src.shape[0] == self.in_x_size, (src.shape[0], self.in_x_size)
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/star-fj/fangjun/open-source/icefall-2/egs/librispeech/ASR/pruned_transducer_stateless7_
→˓streaming/zipformer2.py:1637: TracerWarning: Converting a tensor to a Python boolean␣
→˓might cause the trace to be incorrect. We can't record the data flow of Python values,␣
→˓so this value will be treated as a constant in the future. This means that the trace␣
→˓might not generalize to other inputs!
assert src.shape[0] == self.in_x_size, (

/star-fj/fangjun/open-source/icefall-2/egs/librispeech/ASR/pruned_transducer_stateless7_
→˓streaming/zipformer2.py:1643: TracerWarning: Converting a tensor to a Python boolean␣
→˓might cause the trace to be incorrect. We can't record the data flow of Python values,␣
→˓so this value will be treated as a constant in the future. This means that the trace␣
→˓might not generalize to other inputs!
assert src.shape[2] == self.in_channels, (src.shape[2], self.in_channels)

/star-fj/fangjun/open-source/icefall-2/egs/librispeech/ASR/pruned_transducer_stateless7_
→˓streaming/zipformer2.py:1571: TracerWarning: Converting a tensor to a Python boolean␣
→˓might cause the trace to be incorrect. We can't record the data flow of Python values,␣
→˓so this value will be treated as a constant in the future. This means that the trace␣
→˓might not generalize to other inputs!
if src.shape[0] != self.in_x_size:

/star-fj/fangjun/open-source/icefall-2/egs/librispeech/ASR/pruned_transducer_stateless7_
→˓streaming/zipformer2.py:1763: TracerWarning: Converting a tensor to a Python boolean␣
→˓might cause the trace to be incorrect. We can't record the data flow of Python values,␣
→˓so this value will be treated as a constant in the future. This means that the trace␣
→˓might not generalize to other inputs!
assert src1.shape[:-1] == src2.shape[:-1], (src1.shape, src2.shape)

/star-fj/fangjun/open-source/icefall-2/egs/librispeech/ASR/pruned_transducer_stateless7_
→˓streaming/zipformer2.py:1779: TracerWarning: Converting a tensor to a Python boolean␣
→˓might cause the trace to be incorrect. We can't record the data flow of Python values,␣
→˓so this value will be treated as a constant in the future. This means that the trace␣
→˓might not generalize to other inputs!
assert src1.shape[-1] == self.dim1, (src1.shape[-1], self.dim1)

/star-fj/fangjun/open-source/icefall-2/egs/librispeech/ASR/pruned_transducer_stateless7_
→˓streaming/zipformer2.py:1780: TracerWarning: Converting a tensor to a Python boolean␣
→˓might cause the trace to be incorrect. We can't record the data flow of Python values,␣
→˓so this value will be treated as a constant in the future. This means that the trace␣
→˓might not generalize to other inputs!
assert src2.shape[-1] == self.dim2, (src2.shape[-1], self.dim2)

/star-fj/fangjun/py38/lib/python3.8/site-packages/torch/jit/_trace.py:958:␣
→˓TracerWarning: Encountering a list at the output of the tracer might cause the trace␣
→˓to be incorrect, this is only valid if the container structure does not change based␣
→˓on the module's inputs. Consider using a constant container instead (e.g. for `list`,␣
→˓use a `tuple` instead. for `dict`, use a `NamedTuple` instead). If you absolutely need␣
→˓this and know the side effects, pass strict=False to trace() to allow this behavior.
module._c._create_method_from_trace(

2023-02-27 20:23:19,640 INFO [export-for-ncnn.py:182] Saved to icefall-asr-librispeech-
→˓pruned-transducer-stateless7-streaming-2022-12-29/exp/encoder_jit_trace-pnnx.pt
2023-02-27 20:23:19,646 INFO [export-for-ncnn.py:357] Exporting decoder
/star-fj/fangjun/open-source/icefall-2/egs/librispeech/ASR/pruned_transducer_stateless7_
→˓streaming/decoder.py:102: TracerWarning: Converting a tensor to a Python boolean might␣
→˓cause the trace to be incorrect. We can't record the data flow of Python values, so␣
→˓this value will be treated as a constant in the future. This means that the trace␣
→˓might not generalize to other inputs!
assert embedding_out.size(-1) == self.context_size
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2023-02-27 20:23:19,686 INFO [export-for-ncnn.py:204] Saved to icefall-asr-librispeech-
→˓pruned-transducer-stateless7-streaming-2022-12-29/exp/decoder_jit_trace-pnnx.pt
2023-02-27 20:23:19,686 INFO [export-for-ncnn.py:361] Exporting joiner
2023-02-27 20:23:19,735 INFO [export-for-ncnn.py:231] Saved to icefall-asr-librispeech-
→˓pruned-transducer-stateless7-streaming-2022-12-29/exp/joiner_jit_trace-pnnx.pt

The log shows the model has 69920376 parameters, i.e., ~69.9 M.

ls -lh icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/exp/
→˓pretrained.pt
-rw-r--r-- 1 kuangfangjun root 269M Jan 12 12:53 icefall-asr-librispeech-pruned-
→˓transducer-stateless7-streaming-2022-12-29/exp/pretrained.pt

You can see that the file size of the pre-trained model is 269 MB, which is roughly equal to 69920376*4/1024/1024
= 266.725 MB.

After running pruned_transducer_stateless7_streaming/export-for-ncnn.py, we will get the following
files:

ls -lh icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/exp/
→˓*pnnx.pt

-rw-r--r-- 1 kuangfangjun root 1022K Feb 27 20:23 icefall-asr-librispeech-pruned-
→˓transducer-stateless7-streaming-2022-12-29/exp/decoder_jit_trace-pnnx.pt
-rw-r--r-- 1 kuangfangjun root 266M Feb 27 20:23 icefall-asr-librispeech-pruned-
→˓transducer-stateless7-streaming-2022-12-29/exp/encoder_jit_trace-pnnx.pt
-rw-r--r-- 1 kuangfangjun root 2.8M Feb 27 20:23 icefall-asr-librispeech-pruned-
→˓transducer-stateless7-streaming-2022-12-29/exp/joiner_jit_trace-pnnx.pt

4. Export torchscript model via pnnx

Hint: Make sure you have set up the PATH environment variable in 2. Install ncnn and pnnx. Otherwise, it will throw
an error saying that pnnx could not be found.

Now, it’s time to export our models to ncnn via pnnx.

cd icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/exp/

pnnx ./encoder_jit_trace-pnnx.pt
pnnx ./decoder_jit_trace-pnnx.pt
pnnx ./joiner_jit_trace-pnnx.pt

It will generate the following files:

ls -lh icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/exp/
→˓*ncnn*{bin,param}

-rw-r--r-- 1 kuangfangjun root 509K Feb 27 20:31 icefall-asr-librispeech-pruned-
→˓transducer-stateless7-streaming-2022-12-29/exp/decoder_jit_trace-pnnx.ncnn.bin
-rw-r--r-- 1 kuangfangjun root 437 Feb 27 20:31 icefall-asr-librispeech-pruned-
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→˓transducer-stateless7-streaming-2022-12-29/exp/decoder_jit_trace-pnnx.ncnn.param
-rw-r--r-- 1 kuangfangjun root 133M Feb 27 20:30 icefall-asr-librispeech-pruned-
→˓transducer-stateless7-streaming-2022-12-29/exp/encoder_jit_trace-pnnx.ncnn.bin
-rw-r--r-- 1 kuangfangjun root 152K Feb 27 20:30 icefall-asr-librispeech-pruned-
→˓transducer-stateless7-streaming-2022-12-29/exp/encoder_jit_trace-pnnx.ncnn.param
-rw-r--r-- 1 kuangfangjun root 1.4M Feb 27 20:31 icefall-asr-librispeech-pruned-
→˓transducer-stateless7-streaming-2022-12-29/exp/joiner_jit_trace-pnnx.ncnn.bin
-rw-r--r-- 1 kuangfangjun root 488 Feb 27 20:31 icefall-asr-librispeech-pruned-
→˓transducer-stateless7-streaming-2022-12-29/exp/joiner_jit_trace-pnnx.ncnn.param

There are two types of files:

• param: It is a text file containing the model architectures. You can use a text editor to view its content.

• bin: It is a binary file containing the model parameters.

We compare the file sizes of the models below before and after converting via pnnx:

File name File size
encoder_jit_trace-pnnx.pt 266 MB
decoder_jit_trace-pnnx.pt 1022 KB
joiner_jit_trace-pnnx.pt 2.8 MB
encoder_jit_trace-pnnx.ncnn.bin 133 MB
decoder_jit_trace-pnnx.ncnn.bin 509 KB
joiner_jit_trace-pnnx.ncnn.bin 1.4 MB

You can see that the file sizes of the models after conversion are about one half of the models before conversion:

• encoder: 266 MB vs 133 MB

• decoder: 1022 KB vs 509 KB

• joiner: 2.8 MB vs 1.4 MB

The reason is that by default pnnx converts float32 parameters to float16. A float32 parameter occupies 4 bytes,
while it is 2 bytes for float16. Thus, it is twice smaller after conversion.

Hint: If you use pnnx ./encoder_jit_trace-pnnx.pt fp16=0, then pnnx won’t convert float32 to float16.

5. Test the exported models in icefall

Note: We assume you have set up the environment variable PYTHONPATH when building ncnn.

Now we have successfully converted our pre-trained model to ncnn format. The generated 6 files are what we need.
You can use the following code to test the converted models:

python3 ./pruned_transducer_stateless7_streaming/streaming-ncnn-decode.py \
--tokens ./icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/

→˓data/lang_bpe_500/tokens.txt \
--encoder-param-filename ./icefall-asr-librispeech-pruned-transducer-stateless7-

→˓streaming-2022-12-29/exp/encoder_jit_trace-pnnx.ncnn.param \
(continues on next page)
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(continued from previous page)

--encoder-bin-filename ./icefall-asr-librispeech-pruned-transducer-stateless7-
→˓streaming-2022-12-29/exp/encoder_jit_trace-pnnx.ncnn.bin \
--decoder-param-filename ./icefall-asr-librispeech-pruned-transducer-stateless7-

→˓streaming-2022-12-29/exp/decoder_jit_trace-pnnx.ncnn.param \
--decoder-bin-filename ./icefall-asr-librispeech-pruned-transducer-stateless7-

→˓streaming-2022-12-29/exp/decoder_jit_trace-pnnx.ncnn.bin \
--joiner-param-filename ./icefall-asr-librispeech-pruned-transducer-stateless7-

→˓streaming-2022-12-29/exp/joiner_jit_trace-pnnx.ncnn.param \
--joiner-bin-filename ./icefall-asr-librispeech-pruned-transducer-stateless7-streaming-

→˓2022-12-29/exp/joiner_jit_trace-pnnx.ncnn.bin \
./icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/test_wavs/

→˓1089-134686-0001.wav

Hint: ncnn supports only batch size == 1, so streaming-ncnn-decode.py accepts only 1 wave file as input.

The output is given below:

2023-02-27 20:43:40,283 INFO [streaming-ncnn-decode.py:349] {'tokens': './icefall-asr-
→˓librispeech-pruned-transducer-stateless7-streaming-2022-12-29/data/lang_bpe_500/tokens.
→˓txt', 'encoder_param_filename': './icefall-asr-librispeech-pruned-transducer-
→˓stateless7-streaming-2022-12-29/exp/encoder_jit_trace-pnnx.ncnn.param', 'encoder_bin_
→˓filename': './icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-
→˓29/exp/encoder_jit_trace-pnnx.ncnn.bin', 'decoder_param_filename': './icefall-asr-
→˓librispeech-pruned-transducer-stateless7-streaming-2022-12-29/exp/decoder_jit_trace-
→˓pnnx.ncnn.param', 'decoder_bin_filename': './icefall-asr-librispeech-pruned-transducer-
→˓stateless7-streaming-2022-12-29/exp/decoder_jit_trace-pnnx.ncnn.bin', 'joiner_param_
→˓filename': './icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-
→˓29/exp/joiner_jit_trace-pnnx.ncnn.param', 'joiner_bin_filename': './icefall-asr-
→˓librispeech-pruned-transducer-stateless7-streaming-2022-12-29/exp/joiner_jit_trace-
→˓pnnx.ncnn.bin', 'sound_filename': './icefall-asr-librispeech-pruned-transducer-
→˓stateless7-streaming-2022-12-29/test_wavs/1089-134686-0001.wav'}
2023-02-27 20:43:41,260 INFO [streaming-ncnn-decode.py:357] Constructing Fbank computer
2023-02-27 20:43:41,264 INFO [streaming-ncnn-decode.py:360] Reading sound files: ./
→˓icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/test_wavs/
→˓1089-134686-0001.wav
2023-02-27 20:43:41,269 INFO [streaming-ncnn-decode.py:365] torch.Size([106000])
2023-02-27 20:43:41,280 INFO [streaming-ncnn-decode.py:372] number of states: 35
2023-02-27 20:43:45,026 INFO [streaming-ncnn-decode.py:410] ./icefall-asr-librispeech-
→˓pruned-transducer-stateless7-streaming-2022-12-29/test_wavs/1089-134686-0001.wav
2023-02-27 20:43:45,026 INFO [streaming-ncnn-decode.py:411] AFTER EARLY NIGHTFALL THE␣
→˓YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS

Congratulations! You have successfully exported a model from PyTorch to ncnn!
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6. Modify the exported encoder for sherpa-ncnn

In order to use the exported models in sherpa-ncnn, we have to modify encoder_jit_trace-pnnx.ncnn.param.

Let us have a look at the first few lines of encoder_jit_trace-pnnx.ncnn.param:

7767517
2028 2547
Input in0 0 1 in0

Explanation of the above three lines:

1. 7767517, it is a magic number and should not be changed.

2. 2028 2547, the first number 2028 specifies the number of layers in this file, while 2547 specifies the number
of intermediate outputs of this file

3. Input in0 0 1 in0, Input is the layer type of this layer; in0 is the layer name of this layer; 0 means this
layer has no input; 1 means this layer has one output; in0 is the output name of this layer.

We need to add 1 extra line and also increment the number of layers. The result looks like below:

7767517
2029 2547
SherpaMetaData sherpa_meta_data1 0 0 0=2 1=32 2=4 3=7 15=1 -23316=5,2,4,
→˓3,2,4 -23317=5,384,384,384,384,384 -23318=5,192,192,192,192,192 -23319=5,1,2,4,8,2 -
→˓23320=5,31,31,31,31,31
Input in0 0 1 in0

Explanation
1. 7767517, it is still the same

2. 2029 2547, we have added an extra layer, so we need to update 2028 to 2029. We don’t need to change 2547
since the newly added layer has no inputs or outputs.

3. SherpaMetaData sherpa_meta_data1 0 0 0=2 1=32 2=4 3=7 -23316=5,2,4,3,2,4 -23317=5,
384,384,384,384,384 -23318=5,192,192,192,192,192 -23319=5,1,2,4,8,2 -23320=5,31,31,
31,31,31 This line is newly added. Its explanation is given below:

• SherpaMetaData is the type of this layer. Must be SherpaMetaData.

• sherpa_meta_data1 is the name of this layer. Must be sherpa_meta_data1.

• 0 0 means this layer has no inputs or output. Must be 0 0

• 0=2, 0 is the key and 2 is the value. MUST be 0=2

• 1=32, 1 is the key and 32 is the value of the parameter --decode-chunk-len that you provided
when running ./pruned_transducer_stateless7_streaming/export-for-ncnn.py.

• 2=4, 2 is the key and 4 is the value of the parameter --num-left-chunks that you provided
when running ./pruned_transducer_stateless7_streaming/export-for-ncnn.py.

• 3=7, 3 is the key and 7 is the value of for the amount of padding used in the Conv2DSubsampling
layer. It should be 7 for zipformer if you don’t change zipformer.py.

• 15=1, attribute 15, this is the model version. Starting from sherpa-ncnn v2.0, we require that the
model version has to be >= 1.

• -23316=5,2,4,3,2,4, attribute 16, this is an array attribute. It is attribute 16 since -23300 -
(-23316) = 16. The first element of the array is the length of the array, which is 5 in our case.
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2,4,3,2,4 is the value of --num-encoder-layers``that you provided when running
``./pruned_transducer_stateless7_streaming/export-for-ncnn.py.

• -23317=5,384,384,384,384,384, attribute 17. The first element of the ar-
ray is the length of the array, which is 5 in our case. 384,384,384,384,384
is the value of --encoder-dims``that you provided when running ``./
pruned_transducer_stateless7_streaming/export-for-ncnn.py.

• -23318=5,192,192,192,192,192, attribute 18. The first element of the array is the length of
the array, which is 5 in our case. 192,192,192,192,192 is the value of --attention-dims
that you provided when running ./pruned_transducer_stateless7_streaming/
export-for-ncnn.py.

• -23319=5,1,2,4,8,2, attribute 19. The first element of the array is the length of the array,
which is 5 in our case. 1,2,4,8,2 is the value of --zipformer-downsampling-factors
that you provided when running ./pruned_transducer_stateless7_streaming/
export-for-ncnn.py.

• -23320=5,31,31,31,31,31, attribute 20. The first element of the array is the length of the
array, which is 5 in our case. 31,31,31,31,31 is the value of --cnn-module-kernels
that you provided when running ./pruned_transducer_stateless7_streaming/
export-for-ncnn.py.

For ease of reference, we list the key-value pairs that you need to add in the following table. If your
model has a different setting, please change the values for SherpaMetaData accordingly. Otherwise,
you will be SAD.

key value
0 2 (fixed)
1 -decode-chunk-len
2 --num-left-chunks
3 7 (if you don’t change code)
15 1 (The model version)
-23316 --num-encoder-layer
-23317 --encoder-dims
-23318 --attention-dims
-23319 --zipformer-downsampling-factors
-23320 --cnn-module-kernels

4. Input in0 0 1 in0. No need to change it.

Caution: When you add a new layer SherpaMetaData, please remember to update the number of layers. In our
case, update 2028 to 2029. Otherwise, you will be SAD later.

Hint: After adding the new layer SherpaMetaData, you cannot use this model with streaming-ncnn-decode.py
anymore since SherpaMetaData is supported only in sherpa-ncnn.

Hint: ncnn is very flexible. You can add new layers to it just by text-editing the param file! You don’t need to change
the bin file.

Now you can use this model in sherpa-ncnn. Please refer to the following documentation:
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• Linux/macOS/Windows/arm/aarch64: https://k2-fsa.github.io/sherpa/ncnn/install/index.html

• Android: https://k2-fsa.github.io/sherpa/ncnn/android/index.html

• iOS: https://k2-fsa.github.io/sherpa/ncnn/ios/index.html

• Python: https://k2-fsa.github.io/sherpa/ncnn/python/index.html

We have a list of pre-trained models that have been exported for sherpa-ncnn:

• https://k2-fsa.github.io/sherpa/ncnn/pretrained_models/index.html

You can find more usages there.

5.5.2 Export ConvEmformer transducer models to ncnn

We use the pre-trained model from the following repository as an example:

• https://huggingface.co/Zengwei/icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05

We will show you step by step how to export it to ncnn and run it with sherpa-ncnn.

Hint: We use Ubuntu 18.04, torch 1.13, and Python 3.8 for testing.

Caution: Please use a more recent version of PyTorch. For instance, torch 1.8 may not work.

1. Download the pre-trained model

Hint: You can also refer to https://k2-fsa.github.io/sherpa/cpp/pretrained_models/online_transducer.html#
icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05 to download the pre-trained model.

You have to install git-lfs before you continue.

cd egs/librispeech/ASR

GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/Zengwei/icefall-asr-librispeech-
→˓conv-emformer-transducer-stateless2-2022-07-05
cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05

git lfs pull --include "exp/pretrained-epoch-30-avg-10-averaged.pt"
git lfs pull --include "data/lang_bpe_500/bpe.model"

cd ..

Note: We downloaded exp/pretrained-xxx.pt, not exp/cpu-jit_xxx.pt.

In the above code, we downloaded the pre-trained model into the directory egs/librispeech/ASR/
icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05.
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2. Install ncnn and pnnx

# We put ncnn into $HOME/open-source/ncnn
# You can change it to anywhere you like

cd $HOME
mkdir -p open-source
cd open-source

git clone https://github.com/csukuangfj/ncnn
cd ncnn
git submodule update --recursive --init

# Note: We don't use "python setup.py install" or "pip install ." here

mkdir -p build-wheel
cd build-wheel

cmake \
-DCMAKE_BUILD_TYPE=Release \
-DNCNN_PYTHON=ON \
-DNCNN_BUILD_BENCHMARK=OFF \
-DNCNN_BUILD_EXAMPLES=OFF \
-DNCNN_BUILD_TOOLS=ON \

..

make -j4

cd ..

# Note: $PWD here is $HOME/open-source/ncnn

export PYTHONPATH=$PWD/python:$PYTHONPATH
export PATH=$PWD/tools/pnnx/build/src:$PATH
export PATH=$PWD/build-wheel/tools/quantize:$PATH

# Now build pnnx
cd tools/pnnx
mkdir build
cd build
cmake ..
make -j4

./src/pnnx

Congratulations! You have successfully installed the following components:

• pnnx, which is an executable located in $HOME/open-source/ncnn/tools/pnnx/build/src. We will use it
to convert models exported by torch.jit.trace().

• ncnn2int8, which is an executable located in $HOME/open-source/ncnn/build-wheel/tools/quantize.
We will use it to quantize our models to int8.

• ncnn.cpython-38-x86_64-linux-gnu.so, which is a Python module located in $HOME/open-source/
ncnn/python/ncnn.
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Note: I am using Python 3.8, so it is ncnn.cpython-38-x86_64-linux-gnu.so. If you use a different
version, say, Python 3.9, the name would be ncnn.cpython-39-x86_64-linux-gnu.so.

Also, if you are not using Linux, the file name would also be different. But that does not matter. As long as you
can compile it, it should work.

We have set up PYTHONPATH so that you can use import ncnn in your Python code. We have also set up PATH so that
you can use pnnx and ncnn2int8 later in your terminal.

Caution: Please don’t use https://github.com/tencent/ncnn. We have made some modifications to the offical ncnn.

We will synchronize https://github.com/csukuangfj/ncnn periodically with the official one.

3. Export the model via torch.jit.trace()

First, let us rename our pre-trained model:

cd egs/librispeech/ASR

cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp

ln -s pretrained-epoch-30-avg-10-averaged.pt epoch-30.pt

cd ../..

Next, we use the following code to export our model:

dir=./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/

./conv_emformer_transducer_stateless2/export-for-ncnn.py \
--exp-dir $dir/exp \
--tokens $dir/data/lang_bpe_500/tokens.txt \
--epoch 30 \
--avg 1 \
--use-averaged-model 0 \
--num-encoder-layers 12 \
--chunk-length 32 \
--cnn-module-kernel 31 \
--left-context-length 32 \
--right-context-length 8 \
--memory-size 32 \
--encoder-dim 512

Caution: If your model has different configuration parameters, please change them accordingly.

Hint: We have renamed our model to epoch-30.pt so that we can use --epoch 30. There is only one pre-trained
model, so we use --avg 1 --use-averaged-model 0.
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If you have trained a model by yourself and if you have all checkpoints available, please first use decode.py to tune
--epoch --avg and select the best combination with with --use-averaged-model 1.

Note: You will see the following log output:

2023-01-11 12:15:38,677 INFO [export-for-ncnn.py:220] device: cpu
2023-01-11 12:15:38,681 INFO [export-for-ncnn.py:229] {'best_train_loss': inf, 'best_
→˓valid_loss': inf, 'best_train_epoch': -1, 'best_v
alid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_
→˓interval': 3000, 'feature_dim': 80, 'subsampl
ing_factor': 4, 'decoder_dim': 512, 'joiner_dim': 512, 'model_warm_step': 3000, 'env_info
→˓': {'k2-version': '1.23.2', 'k2-build-type':
'Release', 'k2-with-cuda': True, 'k2-git-sha1': 'a34171ed85605b0926eebbd0463d059431f4f74a
→˓', 'k2-git-date': 'Wed Dec 14 00:06:38 2022',
'lhotse-version': '1.12.0.dev+missing.version.file', 'torch-version': '1.10.0+cu102',
→˓'torch-cuda-available': False, 'torch-cuda-vers
ion': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'fix-stateless3-train-2022-
→˓12-27', 'icefall-git-sha1': '530e8a1-dirty', '
icefall-git-date': 'Tue Dec 27 13:59:18 2022', 'icefall-path': '/star-fj/fangjun/open-
→˓source/icefall', 'k2-path': '/star-fj/fangjun/op
en-source/k2/k2/python/k2/__init__.py', 'lhotse-path': '/star-fj/fangjun/open-source/
→˓lhotse/lhotse/__init__.py', 'hostname': 'de-74279
-k2-train-3-1220120619-7695ff496b-s9n4w', 'IP address': '127.0.0.1'}, 'epoch': 30, 'iter
→˓': 0, 'avg': 1, 'exp_dir': PosixPath('icefa
ll-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp'), 'bpe_model': './
→˓icefall-asr-librispeech-conv-emformer-transdu
cer-stateless2-2022-07-05//data/lang_bpe_500/bpe.model', 'jit': False, 'context_size': 2,
→˓ 'use_averaged_model': False, 'encoder_dim':
512, 'nhead': 8, 'dim_feedforward': 2048, 'num_encoder_layers': 12, 'cnn_module_kernel':␣
→˓31, 'left_context_length': 32, 'chunk_length'
: 32, 'right_context_length': 8, 'memory_size': 32, 'blank_id': 0, 'vocab_size': 500}
2023-01-11 12:15:38,681 INFO [export-for-ncnn.py:231] About to create model
2023-01-11 12:15:40,053 INFO [checkpoint.py:112] Loading checkpoint from icefall-asr-
→˓librispeech-conv-emformer-transducer-stateless2-2
022-07-05/exp/epoch-30.pt
2023-01-11 12:15:40,708 INFO [export-for-ncnn.py:315] Number of model parameters:␣
→˓75490012
2023-01-11 12:15:41,681 INFO [export-for-ncnn.py:318] Using torch.jit.trace()
2023-01-11 12:15:41,681 INFO [export-for-ncnn.py:320] Exporting encoder
2023-01-11 12:15:41,682 INFO [export-for-ncnn.py:149] chunk_length: 32, right_context_
→˓length: 8

The log shows the model has 75490012 parameters, i.e., ~75 M.

ls -lh icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/
→˓pretrained-epoch-30-avg-10-averaged.pt

-rw-r--r-- 1 kuangfangjun root 289M Jan 11 12:05 icefall-asr-librispeech-conv-emformer-
→˓transducer-stateless2-2022-07-05/exp/pretrained-epoch-30-avg-10-averaged.pt

You can see that the file size of the pre-trained model is 289 MB, which is roughly equal to 75490012*4/1024/1024
= 287.97 MB.
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After running conv_emformer_transducer_stateless2/export-for-ncnn.py, we will get the following files:

ls -lh icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/*pnnx*

-rw-r--r-- 1 kuangfangjun root 1010K Jan 11 12:15 icefall-asr-librispeech-conv-emformer-
→˓transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.pt
-rw-r--r-- 1 kuangfangjun root 283M Jan 11 12:15 icefall-asr-librispeech-conv-emformer-
→˓transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.pt
-rw-r--r-- 1 kuangfangjun root 3.0M Jan 11 12:15 icefall-asr-librispeech-conv-emformer-
→˓transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.pt

4. Export torchscript model via pnnx

Hint: Make sure you have set up the PATH environment variable. Otherwise, it will throw an error saying that pnnx
could not be found.

Now, it’s time to export our models to ncnn via pnnx.

cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/

pnnx ./encoder_jit_trace-pnnx.pt
pnnx ./decoder_jit_trace-pnnx.pt
pnnx ./joiner_jit_trace-pnnx.pt

It will generate the following files:

ls -lh icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/*ncnn*
→˓{bin,param}

-rw-r--r-- 1 kuangfangjun root 503K Jan 11 12:38 icefall-asr-librispeech-conv-emformer-
→˓transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.bin
-rw-r--r-- 1 kuangfangjun root 437 Jan 11 12:38 icefall-asr-librispeech-conv-emformer-
→˓transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.param
-rw-r--r-- 1 kuangfangjun root 142M Jan 11 12:36 icefall-asr-librispeech-conv-emformer-
→˓transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.bin
-rw-r--r-- 1 kuangfangjun root 79K Jan 11 12:36 icefall-asr-librispeech-conv-emformer-
→˓transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.param
-rw-r--r-- 1 kuangfangjun root 1.5M Jan 11 12:38 icefall-asr-librispeech-conv-emformer-
→˓transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.bin
-rw-r--r-- 1 kuangfangjun root 488 Jan 11 12:38 icefall-asr-librispeech-conv-emformer-
→˓transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.param

There are two types of files:

• param: It is a text file containing the model architectures. You can use a text editor to view its content.

• bin: It is a binary file containing the model parameters.

We compare the file sizes of the models below before and after converting via pnnx:
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File name File size
encoder_jit_trace-pnnx.pt 283 MB
decoder_jit_trace-pnnx.pt 1010 KB
joiner_jit_trace-pnnx.pt 3.0 MB
encoder_jit_trace-pnnx.ncnn.bin 142 MB
decoder_jit_trace-pnnx.ncnn.bin 503 KB
joiner_jit_trace-pnnx.ncnn.bin 1.5 MB

You can see that the file sizes of the models after conversion are about one half of the models before conversion:

• encoder: 283 MB vs 142 MB

• decoder: 1010 KB vs 503 KB

• joiner: 3.0 MB vs 1.5 MB

The reason is that by default pnnx converts float32 parameters to float16. A float32 parameter occupies 4 bytes,
while it is 2 bytes for float16. Thus, it is twice smaller after conversion.

Hint: If you use pnnx ./encoder_jit_trace-pnnx.pt fp16=0, then pnnx won’t convert float32 to float16.

5. Test the exported models in icefall

Note: We assume you have set up the environment variable PYTHONPATH when building ncnn.

Now we have successfully converted our pre-trained model to ncnn format. The generated 6 files are what we need.
You can use the following code to test the converted models:

./conv_emformer_transducer_stateless2/streaming-ncnn-decode.py \
--tokens ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/data/

→˓lang_bpe_500/tokens.txt \
--encoder-param-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-

→˓2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.param \
--encoder-bin-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-

→˓2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.bin \
--decoder-param-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-

→˓2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.param \
--decoder-bin-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-

→˓2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.bin \
--joiner-param-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-

→˓2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.param \
--joiner-bin-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-

→˓2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.bin \
./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/test_wavs/

→˓1089-134686-0001.wav

Hint: ncnn supports only batch size == 1, so streaming-ncnn-decode.py accepts only 1 wave file as input.

The output is given below:
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2023-01-11 14:02:12,216 INFO [streaming-ncnn-decode.py:320] {'tokens': './icefall-asr-
→˓librispeech-conv-emformer-transducer-stateless2-2022-07-05/data/lang_bpe_500/tokens.txt
→˓', 'encoder_param_filename': './icefall-asr-librispeech-conv-emformer-transducer-
→˓stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.param', 'encoder_bin_filename':
→˓'./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_
→˓jit_trace-pnnx.ncnn.bin', 'decoder_param_filename': './icefall-asr-librispeech-conv-
→˓emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.param',
→˓'decoder_bin_filename': './icefall-asr-librispeech-conv-emformer-transducer-stateless2-
→˓2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.bin', 'joiner_param_filename': './icefall-
→˓asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-
→˓pnnx.ncnn.param', 'joiner_bin_filename': './icefall-asr-librispeech-conv-emformer-
→˓transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.bin', 'sound_filename
→˓': './icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/test_wavs/
→˓1089-134686-0001.wav'}
T 51 32
2023-01-11 14:02:13,141 INFO [streaming-ncnn-decode.py:328] Constructing Fbank computer
2023-01-11 14:02:13,151 INFO [streaming-ncnn-decode.py:331] Reading sound files: ./
→˓icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/test_wavs/1089-
→˓134686-0001.wav
2023-01-11 14:02:13,176 INFO [streaming-ncnn-decode.py:336] torch.Size([106000])
2023-01-11 14:02:17,581 INFO [streaming-ncnn-decode.py:380] ./icefall-asr-librispeech-
→˓conv-emformer-transducer-stateless2-2022-07-05/test_wavs/1089-134686-0001.wav
2023-01-11 14:02:17,581 INFO [streaming-ncnn-decode.py:381] AFTER EARLY NIGHTFALL THE␣
→˓YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS

Congratulations! You have successfully exported a model from PyTorch to ncnn!

6. Modify the exported encoder for sherpa-ncnn

In order to use the exported models in sherpa-ncnn, we have to modify encoder_jit_trace-pnnx.ncnn.param.

Let us have a look at the first few lines of encoder_jit_trace-pnnx.ncnn.param:

7767517
1060 1342
Input in0 0 1 in0

Explanation of the above three lines:

1. 7767517, it is a magic number and should not be changed.

2. 1060 1342, the first number 1060 specifies the number of layers in this file, while 1342 specifies the number
of intermediate outputs of this file

3. Input in0 0 1 in0, Input is the layer type of this layer; in0 is the layer name of this layer; 0 means this
layer has no input; 1 means this layer has one output; in0 is the output name of this layer.

We need to add 1 extra line and also increment the number of layers. The result looks like below:

7767517
1061 1342
SherpaMetaData sherpa_meta_data1 0 0 0=1 1=12 2=32 3=31 4=8 5=32 6=8␣
→˓7=512
Input in0 0 1 in0

Explanation
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1. 7767517, it is still the same

2. 1061 1342, we have added an extra layer, so we need to update 1060 to 1061. We don’t need to change 1342
since the newly added layer has no inputs or outputs.

3. SherpaMetaData sherpa_meta_data1 0 0 0=1 1=12 2=32 3=31 4=8 5=32 6=8 7=512 This line is
newly added. Its explanation is given below:

• SherpaMetaData is the type of this layer. Must be SherpaMetaData.

• sherpa_meta_data1 is the name of this layer. Must be sherpa_meta_data1.

• 0 0 means this layer has no inputs or output. Must be 0 0

• 0=1, 0 is the key and 1 is the value. MUST be 0=1

• 1=12, 1 is the key and 12 is the value of the parameter --num-encoder-layers that you pro-
vided when running conv_emformer_transducer_stateless2/export-for-ncnn.py.

• 2=32, 2 is the key and 32 is the value of the parameter --memory-size that you provided when
running conv_emformer_transducer_stateless2/export-for-ncnn.py.

• 3=31, 3 is the key and 31 is the value of the parameter --cnn-module-kernel that you provided
when running conv_emformer_transducer_stateless2/export-for-ncnn.py.

• 4=8, 4 is the key and 8 is the value of the parameter --left-context-length that you provided
when running conv_emformer_transducer_stateless2/export-for-ncnn.py.

• 5=32, 5 is the key and 32 is the value of the parameter --chunk-length that you provided when
running conv_emformer_transducer_stateless2/export-for-ncnn.py.

• 6=8, 6 is the key and 8 is the value of the parameter --right-context-length that you pro-
vided when running conv_emformer_transducer_stateless2/export-for-ncnn.py.

• 7=512, 7 is the key and 512 is the value of the parameter --encoder-dim that you provided
when running conv_emformer_transducer_stateless2/export-for-ncnn.py.

For ease of reference, we list the key-value pairs that you need to add in the following table. If your
model has a different setting, please change the values for SherpaMetaData accordingly. Otherwise,
you will be SAD.

key value
0 1 (fixed)
1 --num-encoder-layers
2 --memory-size
3 --cnn-module-kernel
4 --left-context-length
5 --chunk-length
6 --right-context-length
7 --encoder-dim

4. Input in0 0 1 in0. No need to change it.

Caution: When you add a new layer SherpaMetaData, please remember to update the number of layers. In our
case, update 1060 to 1061. Otherwise, you will be SAD later.
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Hint: After adding the new layer SherpaMetaData, you cannot use this model with streaming-ncnn-decode.py
anymore since SherpaMetaData is supported only in sherpa-ncnn.

Hint: ncnn is very flexible. You can add new layers to it just by text-editing the param file! You don’t need to change
the bin file.

Now you can use this model in sherpa-ncnn. Please refer to the following documentation:

• Linux/macOS/Windows/arm/aarch64: https://k2-fsa.github.io/sherpa/ncnn/install/index.html

• Android: https://k2-fsa.github.io/sherpa/ncnn/android/index.html

• iOS: https://k2-fsa.github.io/sherpa/ncnn/ios/index.html

• Python: https://k2-fsa.github.io/sherpa/ncnn/python/index.html

We have a list of pre-trained models that have been exported for sherpa-ncnn:

• https://k2-fsa.github.io/sherpa/ncnn/pretrained_models/index.html

You can find more usages there.

7. (Optional) int8 quantization with sherpa-ncnn

This step is optional.

In this step, we describe how to quantize our model with int8.

Change 4. Export torchscript model via pnnx to disable fp16 when using pnnx:

cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/

pnnx ./encoder_jit_trace-pnnx.pt fp16=0
pnnx ./decoder_jit_trace-pnnx.pt
pnnx ./joiner_jit_trace-pnnx.pt fp16=0

Note: We add fp16=0 when exporting the encoder and joiner. ncnn does not support quantizing the decoder model
yet. We will update this documentation once ncnn supports it. (Maybe in this year, 2023).

It will generate the following files

ls -lh icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/*_jit_
→˓trace-pnnx.ncnn.{param,bin}

-rw-r--r-- 1 kuangfangjun root 503K Jan 11 15:56 icefall-asr-librispeech-conv-emformer-
→˓transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.bin
-rw-r--r-- 1 kuangfangjun root 437 Jan 11 15:56 icefall-asr-librispeech-conv-emformer-
→˓transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.param
-rw-r--r-- 1 kuangfangjun root 283M Jan 11 15:56 icefall-asr-librispeech-conv-emformer-
→˓transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.bin
-rw-r--r-- 1 kuangfangjun root 79K Jan 11 15:56 icefall-asr-librispeech-conv-emformer-
→˓transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.param
-rw-r--r-- 1 kuangfangjun root 3.0M Jan 11 15:56 icefall-asr-librispeech-conv-emformer-

(continues on next page)
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→˓transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.bin
-rw-r--r-- 1 kuangfangjun root 488 Jan 11 15:56 icefall-asr-librispeech-conv-emformer-
→˓transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.param

Let us compare again the file sizes:

File name File size
encoder_jit_trace-pnnx.pt 283 MB
decoder_jit_trace-pnnx.pt 1010 KB
joiner_jit_trace-pnnx.pt 3.0 MB
encoder_jit_trace-pnnx.ncnn.bin (fp16) 142 MB
decoder_jit_trace-pnnx.ncnn.bin (fp16) 503 KB
joiner_jit_trace-pnnx.ncnn.bin (fp16) 1.5 MB
encoder_jit_trace-pnnx.ncnn.bin (fp32) 283 MB
joiner_jit_trace-pnnx.ncnn.bin (fp32) 3.0 MB

You can see that the file sizes are doubled when we disable fp16.

Note: You can again use streaming-ncnn-decode.py to test the exported models.

Next, follow 6. Modify the exported encoder for sherpa-ncnn to modify encoder_jit_trace-pnnx.ncnn.param.

Change

7767517
1060 1342
Input in0 0 1 in0

to

7767517
1061 1342
SherpaMetaData sherpa_meta_data1 0 0 0=1 1=12 2=32 3=31 4=8 5=32 6=8␣
→˓7=512
Input in0 0 1 in0

Caution: Please follow 6. Modify the exported encoder for sherpa-ncnn to change the values for SherpaMetaData
if your model uses a different setting.

Next, let us compile sherpa-ncnn since we will quantize our models within sherpa-ncnn.

# We will download sherpa-ncnn to $HOME/open-source/
# You can change it to anywhere you like.
cd $HOME
mkdir -p open-source

cd open-source
git clone https://github.com/k2-fsa/sherpa-ncnn
cd sherpa-ncnn

(continues on next page)
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mkdir build
cd build
cmake ..
make -j 4

./bin/generate-int8-scale-table

export PATH=$HOME/open-source/sherpa-ncnn/build/bin:$PATH

The output of the above commands are:

(py38) kuangfangjun:build$ generate-int8-scale-table
Please provide 10 arg. Currently given: 1
Usage:
generate-int8-scale-table encoder.param encoder.bin decoder.param decoder.bin joiner.
→˓param joiner.bin encoder-scale-table.txt joiner-scale-table.txt wave_filenames.txt

Each line in wave_filenames.txt is a path to some 16k Hz mono wave file.

We need to create a file wave_filenames.txt, in which we need to put some calibration wave files. For
testing purpose, we put the test_wavs from the pre-trained model repository https://huggingface.co/Zengwei/
icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05

cd egs/librispeech/ASR
cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/

cat <<EOF > wave_filenames.txt
../test_wavs/1089-134686-0001.wav
../test_wavs/1221-135766-0001.wav
../test_wavs/1221-135766-0002.wav
EOF

Now we can calculate the scales needed for quantization with the calibration data:

cd egs/librispeech/ASR
cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/

generate-int8-scale-table \
./encoder_jit_trace-pnnx.ncnn.param \
./encoder_jit_trace-pnnx.ncnn.bin \
./decoder_jit_trace-pnnx.ncnn.param \
./decoder_jit_trace-pnnx.ncnn.bin \
./joiner_jit_trace-pnnx.ncnn.param \
./joiner_jit_trace-pnnx.ncnn.bin \
./encoder-scale-table.txt \
./joiner-scale-table.txt \
./wave_filenames.txt

The output logs are in the following:

Don't Use GPU. has_gpu: 0, config.use_vulkan_compute: 1
num encoder conv layers: 88
num joiner conv layers: 3

(continues on next page)
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num files: 3
Processing ../test_wavs/1089-134686-0001.wav
Processing ../test_wavs/1221-135766-0001.wav
Processing ../test_wavs/1221-135766-0002.wav
Processing ../test_wavs/1089-134686-0001.wav
Processing ../test_wavs/1221-135766-0001.wav
Processing ../test_wavs/1221-135766-0002.wav
----------encoder----------
conv_87 : max = 15.942385 threshold = 15.938493 ␣
→˓ scale = 7.968131
conv_88 : max = 35.442448 threshold = 15.549335 ␣
→˓ scale = 8.167552
conv_89 : max = 23.228289 threshold = 8.001738 ␣
→˓ scale = 15.871552
linear_90 : max = 3.976146 threshold = 1.101789 ␣
→˓ scale = 115.267128
linear_91 : max = 6.962030 threshold = 5.162033 ␣
→˓ scale = 24.602713
linear_92 : max = 12.323041 threshold = 3.853959 ␣
→˓ scale = 32.953129
linear_94 : max = 6.905416 threshold = 4.648006 ␣
→˓ scale = 27.323545
linear_93 : max = 6.905416 threshold = 5.474093 ␣
→˓ scale = 23.200188
linear_95 : max = 1.888012 threshold = 1.403563 ␣
→˓ scale = 90.483986
linear_96 : max = 6.856741 threshold = 5.398679 ␣
→˓ scale = 23.524273
linear_97 : max = 9.635942 threshold = 2.613655 ␣
→˓ scale = 48.590950
linear_98 : max = 6.460340 threshold = 5.670146 ␣
→˓ scale = 22.398010
linear_99 : max = 9.532276 threshold = 2.585537 ␣
→˓ scale = 49.119396
linear_101 : max = 6.585871 threshold = 5.719224 ␣
→˓ scale = 22.205809
linear_100 : max = 6.585871 threshold = 5.751382 ␣
→˓ scale = 22.081648
linear_102 : max = 1.593344 threshold = 1.450581 ␣
→˓ scale = 87.551147
linear_103 : max = 6.592681 threshold = 5.705824 ␣
→˓ scale = 22.257959
linear_104 : max = 8.752957 threshold = 1.980955 ␣
→˓ scale = 64.110489
linear_105 : max = 6.696240 threshold = 5.877193 ␣
→˓ scale = 21.608953
linear_106 : max = 9.059659 threshold = 2.643138 ␣
→˓ scale = 48.048950
linear_108 : max = 6.975461 threshold = 4.589567 ␣
→˓ scale = 27.671457
linear_107 : max = 6.975461 threshold = 6.190381 ␣
→˓ scale = 20.515701

(continues on next page)
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linear_109 : max = 3.710759 threshold = 2.305635 ␣
→˓ scale = 55.082436
linear_110 : max = 7.531228 threshold = 5.731162 ␣
→˓ scale = 22.159557
linear_111 : max = 10.528083 threshold = 2.259322 ␣
→˓ scale = 56.211544
linear_112 : max = 8.148807 threshold = 5.500842 ␣
→˓ scale = 23.087374
linear_113 : max = 8.592566 threshold = 1.948851 ␣
→˓ scale = 65.166611
linear_115 : max = 8.437109 threshold = 5.608947 ␣
→˓ scale = 22.642395
linear_114 : max = 8.437109 threshold = 6.193942 ␣
→˓ scale = 20.503904
linear_116 : max = 3.966980 threshold = 3.200896 ␣
→˓ scale = 39.676392
linear_117 : max = 9.451303 threshold = 6.061664 ␣
→˓ scale = 20.951344
linear_118 : max = 12.077262 threshold = 3.965800 ␣
→˓ scale = 32.023804
linear_119 : max = 9.671615 threshold = 4.847613 ␣
→˓ scale = 26.198460
linear_120 : max = 8.625638 threshold = 3.131427 ␣
→˓ scale = 40.556595
linear_122 : max = 10.274080 threshold = 4.888716 ␣
→˓ scale = 25.978189
linear_121 : max = 10.274080 threshold = 5.420480 ␣
→˓ scale = 23.429659
linear_123 : max = 4.826197 threshold = 3.599617 ␣
→˓ scale = 35.281532
linear_124 : max = 11.396383 threshold = 7.325849 ␣
→˓ scale = 17.335875
linear_125 : max = 9.337198 threshold = 3.941410 ␣
→˓ scale = 32.221970
linear_126 : max = 9.699965 threshold = 4.842878 ␣
→˓ scale = 26.224073
linear_127 : max = 8.775370 threshold = 3.884215 ␣
→˓ scale = 32.696438
linear_129 : max = 9.872276 threshold = 4.837319 ␣
→˓ scale = 26.254213
linear_128 : max = 9.872276 threshold = 7.180057 ␣
→˓ scale = 17.687883
linear_130 : max = 4.150427 threshold = 3.454298 ␣
→˓ scale = 36.765789
linear_131 : max = 11.112692 threshold = 7.924847 ␣
→˓ scale = 16.025545
linear_132 : max = 11.852893 threshold = 3.116593 ␣
→˓ scale = 40.749626
linear_133 : max = 11.517084 threshold = 5.024665 ␣
→˓ scale = 25.275314
linear_134 : max = 10.683807 threshold = 3.878618 ␣
→˓ scale = 32.743618

(continues on next page)

74 Chapter 5. Model export



icefall, Release 0.1

(continued from previous page)

linear_136 : max = 12.421055 threshold = 6.322729 ␣
→˓ scale = 20.086264
linear_135 : max = 12.421055 threshold = 5.309880 ␣
→˓ scale = 23.917679
linear_137 : max = 4.827781 threshold = 3.744595 ␣
→˓ scale = 33.915554
linear_138 : max = 14.422395 threshold = 7.742882 ␣
→˓ scale = 16.402161
linear_139 : max = 8.527538 threshold = 3.866123 ␣
→˓ scale = 32.849449
linear_140 : max = 12.128619 threshold = 4.657793 ␣
→˓ scale = 27.266134
linear_141 : max = 9.839593 threshold = 3.845993 ␣
→˓ scale = 33.021378
linear_143 : max = 12.442304 threshold = 7.099039 ␣
→˓ scale = 17.889746
linear_142 : max = 12.442304 threshold = 5.325038 ␣
→˓ scale = 23.849592
linear_144 : max = 5.929444 threshold = 5.618206 ␣
→˓ scale = 22.605080
linear_145 : max = 13.382126 threshold = 9.321095 ␣
→˓ scale = 13.625010
linear_146 : max = 9.894987 threshold = 3.867645 ␣
→˓ scale = 32.836517
linear_147 : max = 10.915313 threshold = 4.906028 ␣
→˓ scale = 25.886522
linear_148 : max = 9.614287 threshold = 3.908151 ␣
→˓ scale = 32.496181
linear_150 : max = 11.724932 threshold = 4.485588 ␣
→˓ scale = 28.312899
linear_149 : max = 11.724932 threshold = 5.161146 ␣
→˓ scale = 24.606939
linear_151 : max = 7.164453 threshold = 5.847355 ␣
→˓ scale = 21.719223
linear_152 : max = 13.086471 threshold = 5.984121 ␣
→˓ scale = 21.222834
linear_153 : max = 11.099524 threshold = 3.991601 ␣
→˓ scale = 31.816805
linear_154 : max = 10.054585 threshold = 4.489706 ␣
→˓ scale = 28.286930
linear_155 : max = 12.389185 threshold = 3.100321 ␣
→˓ scale = 40.963501
linear_157 : max = 9.982999 threshold = 5.154796 ␣
→˓ scale = 24.637253
linear_156 : max = 9.982999 threshold = 8.537706 ␣
→˓ scale = 14.875190
linear_158 : max = 8.420287 threshold = 6.502287 ␣
→˓ scale = 19.531588
linear_159 : max = 25.014746 threshold = 9.423280 ␣
→˓ scale = 13.477261
linear_160 : max = 45.633553 threshold = 5.715335 ␣
→˓ scale = 22.220921
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linear_161 : max = 20.371849 threshold = 5.117830 ␣
→˓ scale = 24.815203
linear_162 : max = 12.492933 threshold = 3.126283 ␣
→˓ scale = 40.623318
linear_164 : max = 20.697504 threshold = 4.825712 ␣
→˓ scale = 26.317358
linear_163 : max = 20.697504 threshold = 5.078367 ␣
→˓ scale = 25.008038
linear_165 : max = 9.023975 threshold = 6.836278 ␣
→˓ scale = 18.577358
linear_166 : max = 34.860619 threshold = 7.259792 ␣
→˓ scale = 17.493614
linear_167 : max = 30.380934 threshold = 5.496160 ␣
→˓ scale = 23.107042
linear_168 : max = 20.691216 threshold = 4.733317 ␣
→˓ scale = 26.831076
linear_169 : max = 9.723948 threshold = 3.952728 ␣
→˓ scale = 32.129707
linear_171 : max = 21.034811 threshold = 5.366547 ␣
→˓ scale = 23.665123
linear_170 : max = 21.034811 threshold = 5.356277 ␣
→˓ scale = 23.710501
linear_172 : max = 10.556884 threshold = 5.729481 ␣
→˓ scale = 22.166058
linear_173 : max = 20.033039 threshold = 10.207264 ␣
→˓ scale = 12.442120
linear_174 : max = 11.597379 threshold = 2.658676 ␣
→˓ scale = 47.768131
----------joiner----------
linear_2 : max = 19.293503 threshold = 14.305265 ␣
→˓ scale = 8.877850
linear_1 : max = 10.812222 threshold = 8.766452 ␣
→˓ scale = 14.487047
linear_3 : max = 0.999999 threshold = 0.999755 ␣
→˓ scale = 127.031174
ncnn int8 calibration table create success, best wish for your int8 inference has a low␣
→˓accuracy loss...\(^0^)/...233...

It generates the following two files:

$ ls -lh encoder-scale-table.txt joiner-scale-table.txt
-rw-r--r-- 1 kuangfangjun root 955K Jan 11 17:28 encoder-scale-table.txt
-rw-r--r-- 1 kuangfangjun root 18K Jan 11 17:28 joiner-scale-table.txt

Caution: Definitely, you need more calibration data to compute the scale table.

Finally, let us use the scale table to quantize our models into int8.

ncnn2int8

usage: ncnn2int8 [inparam] [inbin] [outparam] [outbin] [calibration table]
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First, we quantize the encoder model:

cd egs/librispeech/ASR
cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/

ncnn2int8 \
./encoder_jit_trace-pnnx.ncnn.param \
./encoder_jit_trace-pnnx.ncnn.bin \
./encoder_jit_trace-pnnx.ncnn.int8.param \
./encoder_jit_trace-pnnx.ncnn.int8.bin \
./encoder-scale-table.txt

Next, we quantize the joiner model:

ncnn2int8 \
./joiner_jit_trace-pnnx.ncnn.param \
./joiner_jit_trace-pnnx.ncnn.bin \
./joiner_jit_trace-pnnx.ncnn.int8.param \
./joiner_jit_trace-pnnx.ncnn.int8.bin \
./joiner-scale-table.txt

The above two commands generate the following 4 files:

-rw-r--r-- 1 kuangfangjun root 99M Jan 11 17:34 encoder_jit_trace-pnnx.ncnn.int8.bin
-rw-r--r-- 1 kuangfangjun root 78K Jan 11 17:34 encoder_jit_trace-pnnx.ncnn.int8.param
-rw-r--r-- 1 kuangfangjun root 774K Jan 11 17:35 joiner_jit_trace-pnnx.ncnn.int8.bin
-rw-r--r-- 1 kuangfangjun root 496 Jan 11 17:35 joiner_jit_trace-pnnx.ncnn.int8.param

Congratulations! You have successfully quantized your model from float32 to int8.

Caution: ncnn.int8.param and ncnn.int8.bin must be used in pairs.

You can replace ncnn.param and ncnn.bin with ncnn.int8.param and ncnn.int8.bin in sherpa-ncnn if you
like.

For instance, to use only the int8 encoder in sherpa-ncnn, you can replace the following invocation:

cd egs/librispeech/ASR
cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/
→˓exp/

sherpa-ncnn \
../data/lang_bpe_500/tokens.txt \
./encoder_jit_trace-pnnx.ncnn.param \
./encoder_jit_trace-pnnx.ncnn.bin \
./decoder_jit_trace-pnnx.ncnn.param \
./decoder_jit_trace-pnnx.ncnn.bin \
./joiner_jit_trace-pnnx.ncnn.param \
./joiner_jit_trace-pnnx.ncnn.bin \
../test_wavs/1089-134686-0001.wav

with
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cd egs/librispeech/ASR
cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/
→˓exp/

sherpa-ncnn \
../data/lang_bpe_500/tokens.txt \
./encoder_jit_trace-pnnx.ncnn.int8.param \
./encoder_jit_trace-pnnx.ncnn.int8.bin \
./decoder_jit_trace-pnnx.ncnn.param \
./decoder_jit_trace-pnnx.ncnn.bin \
./joiner_jit_trace-pnnx.ncnn.param \
./joiner_jit_trace-pnnx.ncnn.bin \
../test_wavs/1089-134686-0001.wav

The following table compares again the file sizes:

File name File size
encoder_jit_trace-pnnx.pt 283 MB
decoder_jit_trace-pnnx.pt 1010 KB
joiner_jit_trace-pnnx.pt 3.0 MB
encoder_jit_trace-pnnx.ncnn.bin (fp16) 142 MB
decoder_jit_trace-pnnx.ncnn.bin (fp16) 503 KB
joiner_jit_trace-pnnx.ncnn.bin (fp16) 1.5 MB
encoder_jit_trace-pnnx.ncnn.bin (fp32) 283 MB
joiner_jit_trace-pnnx.ncnn.bin (fp32) 3.0 MB
encoder_jit_trace-pnnx.ncnn.int8.bin 99 MB
joiner_jit_trace-pnnx.ncnn.int8.bin 774 KB

You can see that the file sizes of the model after int8 quantization are much smaller.

Hint: Currently, only linear layers and convolutional layers are quantized with int8, so you don’t see an exact 4x
reduction in file sizes.

Note: You need to test the recognition accuracy after int8 quantization.

You can find the speed comparison at https://github.com/k2-fsa/sherpa-ncnn/issues/44.

That’s it! Have fun with sherpa-ncnn!
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5.5.3 Export LSTM transducer models to ncnn

We use the pre-trained model from the following repository as an example:

https://huggingface.co/csukuangfj/icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03

We will show you step by step how to export it to ncnn and run it with sherpa-ncnn.

Hint: We use Ubuntu 18.04, torch 1.13, and Python 3.8 for testing.

Caution: Please use a more recent version of PyTorch. For instance, torch 1.8 may not work.

1. Download the pre-trained model

Hint: You have to install git-lfs before you continue.

cd egs/librispeech/ASR
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/csukuangfj/icefall-asr-
→˓librispeech-lstm-transducer-stateless2-2022-09-03
cd icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03

git lfs pull --include "exp/pretrained-iter-468000-avg-16.pt"
git lfs pull --include "data/lang_bpe_500/bpe.model"

cd ..

Note: We downloaded exp/pretrained-xxx.pt, not exp/cpu-jit_xxx.pt.

In the above code, we downloaded the pre-trained model into the directory egs/librispeech/ASR/
icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03.

2. Install ncnn and pnnx

Please refer to 2. Install ncnn and pnnx .

3. Export the model via torch.jit.trace()

First, let us rename our pre-trained model:

cd egs/librispeech/ASR

cd icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03/exp

ln -s pretrained-iter-468000-avg-16.pt epoch-99.pt

cd ../..
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Next, we use the following code to export our model:

dir=./icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03

./lstm_transducer_stateless2/export-for-ncnn.py \
--exp-dir $dir/exp \
--tokens $dir/data/lang_bpe_500/tokens.txt \
--epoch 99 \
--avg 1 \
--use-averaged-model 0 \
--num-encoder-layers 12 \
--encoder-dim 512 \
--rnn-hidden-size 1024

Hint: We have renamed our model to epoch-99.pt so that we can use --epoch 99. There is only one pre-trained
model, so we use --avg 1 --use-averaged-model 0.

If you have trained a model by yourself and if you have all checkpoints available, please first use decode.py to tune
--epoch --avg and select the best combination with with --use-averaged-model 1.

Note: You will see the following log output:

2023-02-17 11:22:42,862 INFO [export-for-ncnn.py:222] device: cpu
2023-02-17 11:22:42,865 INFO [export-for-ncnn.py:231] {'best_train_loss': inf, 'best_
→˓valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0,
→˓ 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80,
→˓'subsampling_factor': 4, 'dim_feedforward': 2048, 'decoder_dim': 512, 'joiner_dim':␣
→˓512, 'is_pnnx': False, 'model_warm_step': 3000, 'env_info': {'k2-version': '1.23.4',
→˓'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1':
→˓'62e404dd3f3a811d73e424199b3408e309c06e1a', 'k2-git-date': 'Mon Jan 30 10:26:16 2023',
→˓'lhotse-version': '1.12.0.dev+missing.version.file', 'torch-version': '1.10.0+cu102',
→˓'torch-cuda-available': False, 'torch-cuda-version': '10.2', 'python-version': '3.8',
→˓'icefall-git-branch': 'master', 'icefall-git-sha1': '6d7a559-dirty', 'icefall-git-date
→˓': 'Thu Feb 16 19:47:54 2023', 'icefall-path': '/star-fj/fangjun/open-source/icefall-2
→˓', 'k2-path': '/star-fj/fangjun/open-source/k2/k2/python/k2/__init__.py', 'lhotse-path
→˓': '/star-fj/fangjun/open-source/lhotse/lhotse/__init__.py', 'hostname': 'de-74279-k2-
→˓train-3-1220120619-7695ff496b-s9n4w', 'IP address': '10.177.6.147'}, 'epoch': 99, 'iter
→˓': 0, 'avg': 1, 'exp_dir': PosixPath('icefall-asr-librispeech-lstm-transducer-
→˓stateless2-2022-09-03/exp'), 'bpe_model': './icefall-asr-librispeech-lstm-transducer-
→˓stateless2-2022-09-03/data/lang_bpe_500/bpe.model', 'context_size': 2, 'use_averaged_
→˓model': False, 'num_encoder_layers': 12, 'encoder_dim': 512, 'rnn_hidden_size': 1024,
→˓'aux_layer_period': 0, 'blank_id': 0, 'vocab_size': 500}
2023-02-17 11:22:42,865 INFO [export-for-ncnn.py:235] About to create model
2023-02-17 11:22:43,239 INFO [train.py:472] Disable giga
2023-02-17 11:22:43,249 INFO [checkpoint.py:112] Loading checkpoint from icefall-asr-
→˓librispeech-lstm-transducer-stateless2-2022-09-03/exp/epoch-99.pt
2023-02-17 11:22:44,595 INFO [export-for-ncnn.py:324] encoder parameters: 83137520
2023-02-17 11:22:44,596 INFO [export-for-ncnn.py:325] decoder parameters: 257024
2023-02-17 11:22:44,596 INFO [export-for-ncnn.py:326] joiner parameters: 781812
2023-02-17 11:22:44,596 INFO [export-for-ncnn.py:327] total parameters: 84176356
2023-02-17 11:22:44,596 INFO [export-for-ncnn.py:329] Using torch.jit.trace()
2023-02-17 11:22:44,596 INFO [export-for-ncnn.py:331] Exporting encoder

(continues on next page)
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2023-02-17 11:22:48,182 INFO [export-for-ncnn.py:158] Saved to icefall-asr-librispeech-
→˓lstm-transducer-stateless2-2022-09-03/exp/encoder_jit_trace-pnnx.pt
2023-02-17 11:22:48,183 INFO [export-for-ncnn.py:335] Exporting decoder
/star-fj/fangjun/open-source/icefall-2/egs/librispeech/ASR/lstm_transducer_stateless2/
→˓decoder.py:101: TracerWarning: Converting a tensor to a Python boolean might cause the␣
→˓trace to be incorrect. We can't record the data flow of Python values, so this value␣
→˓will be treated as a constant in the future. This means that the trace might not␣
→˓generalize to other inputs!
need_pad = bool(need_pad)

2023-02-17 11:22:48,259 INFO [export-for-ncnn.py:180] Saved to icefall-asr-librispeech-
→˓lstm-transducer-stateless2-2022-09-03/exp/decoder_jit_trace-pnnx.pt
2023-02-17 11:22:48,259 INFO [export-for-ncnn.py:339] Exporting joiner
2023-02-17 11:22:48,304 INFO [export-for-ncnn.py:207] Saved to icefall-asr-librispeech-
→˓lstm-transducer-stateless2-2022-09-03/exp/joiner_jit_trace-pnnx.pt

The log shows the model has 84176356 parameters, i.e., ~84 M.

ls -lh icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03/exp/pretrained-iter-
→˓468000-avg-16.pt

-rw-r--r-- 1 kuangfangjun root 324M Feb 17 10:34 icefall-asr-librispeech-lstm-transducer-
→˓stateless2-2022-09-03/exp/pretrained-iter-468000-avg-16.pt

You can see that the file size of the pre-trained model is 324 MB, which is roughly equal to 84176356*4/1024/1024
= 321.107 MB.

After running lstm_transducer_stateless2/export-for-ncnn.py, we will get the following files:

ls -lh icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03/exp/*pnnx.pt

-rw-r--r-- 1 kuangfangjun root 1010K Feb 17 11:22 icefall-asr-librispeech-lstm-
→˓transducer-stateless2-2022-09-03/exp/decoder_jit_trace-pnnx.pt
-rw-r--r-- 1 kuangfangjun root 318M Feb 17 11:22 icefall-asr-librispeech-lstm-
→˓transducer-stateless2-2022-09-03/exp/encoder_jit_trace-pnnx.pt
-rw-r--r-- 1 kuangfangjun root 3.0M Feb 17 11:22 icefall-asr-librispeech-lstm-
→˓transducer-stateless2-2022-09-03/exp/joiner_jit_trace-pnnx.pt

4. Export torchscript model via pnnx

Hint: Make sure you have set up the PATH environment variable in 2. Install ncnn and pnnx. Otherwise, it will throw
an error saying that pnnx could not be found.

Now, it’s time to export our models to ncnn via pnnx.

cd icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03/exp/

pnnx ./encoder_jit_trace-pnnx.pt
pnnx ./decoder_jit_trace-pnnx.pt
pnnx ./joiner_jit_trace-pnnx.pt
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It will generate the following files:

ls -lh icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03/exp/*ncnn*{bin,
→˓param}

-rw-r--r-- 1 kuangfangjun root 503K Feb 17 11:32 icefall-asr-librispeech-lstm-transducer-
→˓stateless2-2022-09-03/exp/decoder_jit_trace-pnnx.ncnn.bin
-rw-r--r-- 1 kuangfangjun root 437 Feb 17 11:32 icefall-asr-librispeech-lstm-transducer-
→˓stateless2-2022-09-03/exp/decoder_jit_trace-pnnx.ncnn.param
-rw-r--r-- 1 kuangfangjun root 159M Feb 17 11:32 icefall-asr-librispeech-lstm-transducer-
→˓stateless2-2022-09-03/exp/encoder_jit_trace-pnnx.ncnn.bin
-rw-r--r-- 1 kuangfangjun root 21K Feb 17 11:32 icefall-asr-librispeech-lstm-transducer-
→˓stateless2-2022-09-03/exp/encoder_jit_trace-pnnx.ncnn.param
-rw-r--r-- 1 kuangfangjun root 1.5M Feb 17 11:33 icefall-asr-librispeech-lstm-transducer-
→˓stateless2-2022-09-03/exp/joiner_jit_trace-pnnx.ncnn.bin
-rw-r--r-- 1 kuangfangjun root 488 Feb 17 11:33 icefall-asr-librispeech-lstm-transducer-
→˓stateless2-2022-09-03/exp/joiner_jit_trace-pnnx.ncnn.param

There are two types of files:

• param: It is a text file containing the model architectures. You can use a text editor to view its content.

• bin: It is a binary file containing the model parameters.

We compare the file sizes of the models below before and after converting via pnnx:

File name File size
encoder_jit_trace-pnnx.pt 318 MB
decoder_jit_trace-pnnx.pt 1010 KB
joiner_jit_trace-pnnx.pt 3.0 MB
encoder_jit_trace-pnnx.ncnn.bin 159 MB
decoder_jit_trace-pnnx.ncnn.bin 503 KB
joiner_jit_trace-pnnx.ncnn.bin 1.5 MB

You can see that the file sizes of the models after conversion are about one half of the models before conversion:

• encoder: 318 MB vs 159 MB

• decoder: 1010 KB vs 503 KB

• joiner: 3.0 MB vs 1.5 MB

The reason is that by default pnnx converts float32 parameters to float16. A float32 parameter occupies 4 bytes,
while it is 2 bytes for float16. Thus, it is twice smaller after conversion.

Hint: If you use pnnx ./encoder_jit_trace-pnnx.pt fp16=0, then pnnx won’t convert float32 to float16.
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5. Test the exported models in icefall

Note: We assume you have set up the environment variable PYTHONPATH when building ncnn.

Now we have successfully converted our pre-trained model to ncnn format. The generated 6 files are what we need.
You can use the following code to test the converted models:

python3 ./lstm_transducer_stateless2/streaming-ncnn-decode.py \
--tokens ./icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03/data/lang_bpe_

→˓500/tokens.txt \
--encoder-param-filename ./icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-

→˓03/exp/encoder_jit_trace-pnnx.ncnn.param \
--encoder-bin-filename ./icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03/

→˓exp/encoder_jit_trace-pnnx.ncnn.bin \
--decoder-param-filename ./icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-

→˓03/exp/decoder_jit_trace-pnnx.ncnn.param \
--decoder-bin-filename ./icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03/

→˓exp/decoder_jit_trace-pnnx.ncnn.bin \
--joiner-param-filename ./icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-

→˓03/exp/joiner_jit_trace-pnnx.ncnn.param \
--joiner-bin-filename ./icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03/

→˓exp/joiner_jit_trace-pnnx.ncnn.bin \
./icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03/test_wavs/1089-134686-

→˓0001.wav

Hint: ncnn supports only batch size == 1, so streaming-ncnn-decode.py accepts only 1 wave file as input.

The output is given below:

2023-02-17 11:37:30,861 INFO [streaming-ncnn-decode.py:255] {'tokens': './icefall-asr-
→˓librispeech-lstm-transducer-stateless2-2022-09-03/data/lang_bpe_500/tokens.txt',
→˓'encoder_param_filename': './icefall-asr-librispeech-lstm-transducer-stateless2-2022-
→˓09-03/exp/encoder_jit_trace-pnnx.ncnn.param', 'encoder_bin_filename': './icefall-asr-
→˓librispeech-lstm-transducer-stateless2-2022-09-03/exp/encoder_jit_trace-pnnx.ncnn.bin',
→˓ 'decoder_param_filename': './icefall-asr-librispeech-lstm-transducer-stateless2-2022-
→˓09-03/exp/decoder_jit_trace-pnnx.ncnn.param', 'decoder_bin_filename': './icefall-asr-
→˓librispeech-lstm-transducer-stateless2-2022-09-03/exp/decoder_jit_trace-pnnx.ncnn.bin',
→˓ 'joiner_param_filename': './icefall-asr-librispeech-lstm-transducer-stateless2-2022-
→˓09-03/exp/joiner_jit_trace-pnnx.ncnn.param', 'joiner_bin_filename': './icefall-asr-
→˓librispeech-lstm-transducer-stateless2-2022-09-03/exp/joiner_jit_trace-pnnx.ncnn.bin',
→˓'sound_filename': './icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03/
→˓test_wavs/1089-134686-0001.wav'}
2023-02-17 11:37:31,425 INFO [streaming-ncnn-decode.py:263] Constructing Fbank computer
2023-02-17 11:37:31,427 INFO [streaming-ncnn-decode.py:266] Reading sound files: ./
→˓icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03/test_wavs/1089-134686-
→˓0001.wav
2023-02-17 11:37:31,431 INFO [streaming-ncnn-decode.py:271] torch.Size([106000])
2023-02-17 11:37:34,115 INFO [streaming-ncnn-decode.py:342] ./icefall-asr-librispeech-
→˓lstm-transducer-stateless2-2022-09-03/test_wavs/1089-134686-0001.wav
2023-02-17 11:37:34,115 INFO [streaming-ncnn-decode.py:343] AFTER EARLY NIGHTFALL THE␣
→˓YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
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Congratulations! You have successfully exported a model from PyTorch to ncnn!

6. Modify the exported encoder for sherpa-ncnn

In order to use the exported models in sherpa-ncnn, we have to modify encoder_jit_trace-pnnx.ncnn.param.

Let us have a look at the first few lines of encoder_jit_trace-pnnx.ncnn.param:

7767517
267 379
Input in0 0 1 in0

Explanation of the above three lines:

1. 7767517, it is a magic number and should not be changed.

2. 267 379, the first number 267 specifies the number of layers in this file, while 379 specifies the number of
intermediate outputs of this file

3. Input in0 0 1 in0, Input is the layer type of this layer; in0 is the layer name of this layer; 0 means this
layer has no input; 1 means this layer has one output; in0 is the output name of this layer.

We need to add 1 extra line and also increment the number of layers. The result looks like below:

7767517
268 379
SherpaMetaData sherpa_meta_data1 0 0 0=3 1=12 2=512 3=1024
Input in0 0 1 in0

Explanation
1. 7767517, it is still the same

2. 268 379, we have added an extra layer, so we need to update 267 to 268. We don’t need to change 379 since
the newly added layer has no inputs or outputs.

3. SherpaMetaData sherpa_meta_data1 0 0 0=3 1=12 2=512 3=1024 This line is newly added. Its expla-
nation is given below:

• SherpaMetaData is the type of this layer. Must be SherpaMetaData.

• sherpa_meta_data1 is the name of this layer. Must be sherpa_meta_data1.

• 0 0 means this layer has no inputs or output. Must be 0 0

• 0=3, 0 is the key and 3 is the value. MUST be 0=3

• 1=12, 1 is the key and 12 is the value of the parameter --num-encoder-layers that you pro-
vided when running ./lstm_transducer_stateless2/export-for-ncnn.py.

• 2=512, 2 is the key and 512 is the value of the parameter --encoder-dim that you provided
when running ./lstm_transducer_stateless2/export-for-ncnn.py.

• 3=1024, 3 is the key and 1024 is the value of the parameter --rnn-hidden-size that you
provided when running ./lstm_transducer_stateless2/export-for-ncnn.py.

For ease of reference, we list the key-value pairs that you need to add in the following table. If your
model has a different setting, please change the values for SherpaMetaData accordingly. Otherwise,
you will be SAD.
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key value
0 3 (fixed)
1 --num-encoder-layers
2 --encoder-dim
3 --rnn-hidden-size

4. Input in0 0 1 in0. No need to change it.

Caution: When you add a new layer SherpaMetaData, please remember to update the number of layers. In our
case, update 267 to 268. Otherwise, you will be SAD later.

Hint: After adding the new layer SherpaMetaData, you cannot use this model with streaming-ncnn-decode.py
anymore since SherpaMetaData is supported only in sherpa-ncnn.

Hint: ncnn is very flexible. You can add new layers to it just by text-editing the param file! You don’t need to change
the bin file.

Now you can use this model in sherpa-ncnn. Please refer to the following documentation:

• Linux/macOS/Windows/arm/aarch64: https://k2-fsa.github.io/sherpa/ncnn/install/index.html

• Android: https://k2-fsa.github.io/sherpa/ncnn/android/index.html

• iOS: https://k2-fsa.github.io/sherpa/ncnn/ios/index.html

• Python: https://k2-fsa.github.io/sherpa/ncnn/python/index.html

We have a list of pre-trained models that have been exported for sherpa-ncnn:

• https://k2-fsa.github.io/sherpa/ncnn/pretrained_models/index.html

You can find more usages there.

7. (Optional) int8 quantization with sherpa-ncnn

This step is optional.

In this step, we describe how to quantize our model with int8.

Change 4. Export torchscript model via pnnx to disable fp16 when using pnnx:

cd icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03/exp/

pnnx ./encoder_jit_trace-pnnx.pt fp16=0
pnnx ./decoder_jit_trace-pnnx.pt
pnnx ./joiner_jit_trace-pnnx.pt fp16=0

Note: We add fp16=0 when exporting the encoder and joiner. ncnn does not support quantizing the decoder model
yet. We will update this documentation once ncnn supports it. (Maybe in this year, 2023).
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ls -lh icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03/exp/*_jit_trace-
→˓pnnx.ncnn.{param,bin}

-rw-r--r-- 1 kuangfangjun root 503K Feb 17 11:32 icefall-asr-librispeech-lstm-transducer-
→˓stateless2-2022-09-03/exp/decoder_jit_trace-pnnx.ncnn.bin
-rw-r--r-- 1 kuangfangjun root 437 Feb 17 11:32 icefall-asr-librispeech-lstm-transducer-
→˓stateless2-2022-09-03/exp/decoder_jit_trace-pnnx.ncnn.param
-rw-r--r-- 1 kuangfangjun root 317M Feb 17 11:54 icefall-asr-librispeech-lstm-transducer-
→˓stateless2-2022-09-03/exp/encoder_jit_trace-pnnx.ncnn.bin
-rw-r--r-- 1 kuangfangjun root 21K Feb 17 11:54 icefall-asr-librispeech-lstm-transducer-
→˓stateless2-2022-09-03/exp/encoder_jit_trace-pnnx.ncnn.param
-rw-r--r-- 1 kuangfangjun root 3.0M Feb 17 11:54 icefall-asr-librispeech-lstm-transducer-
→˓stateless2-2022-09-03/exp/joiner_jit_trace-pnnx.ncnn.bin
-rw-r--r-- 1 kuangfangjun root 488 Feb 17 11:54 icefall-asr-librispeech-lstm-transducer-
→˓stateless2-2022-09-03/exp/joiner_jit_trace-pnnx.ncnn.param

Let us compare again the file sizes:

File name File size
encoder_jit_trace-pnnx.pt 318 MB
decoder_jit_trace-pnnx.pt 1010 KB
joiner_jit_trace-pnnx.pt 3.0 MB
encoder_jit_trace-pnnx.ncnn.bin (fp16) 159 MB
decoder_jit_trace-pnnx.ncnn.bin (fp16) 503 KB
joiner_jit_trace-pnnx.ncnn.bin (fp16) 1.5 MB
encoder_jit_trace-pnnx.ncnn.bin (fp32) 317 MB
joiner_jit_trace-pnnx.ncnn.bin (fp32) 3.0 MB

You can see that the file sizes are doubled when we disable fp16.

Note: You can again use streaming-ncnn-decode.py to test the exported models.

Next, follow 6. Modify the exported encoder for sherpa-ncnn to modify encoder_jit_trace-pnnx.ncnn.param.

Change

7767517
267 379
Input in0 0 1 in0

to

7767517
268 379
SherpaMetaData sherpa_meta_data1 0 0 0=3 1=12 2=512 3=1024
Input in0 0 1 in0

Caution: Please follow 6. Modify the exported encoder for sherpa-ncnn to change the values for SherpaMetaData
if your model uses a different setting.

Next, let us compile sherpa-ncnn since we will quantize our models within sherpa-ncnn.
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# We will download sherpa-ncnn to $HOME/open-source/
# You can change it to anywhere you like.
cd $HOME
mkdir -p open-source

cd open-source
git clone https://github.com/k2-fsa/sherpa-ncnn
cd sherpa-ncnn
mkdir build
cd build
cmake ..
make -j 4

./bin/generate-int8-scale-table

export PATH=$HOME/open-source/sherpa-ncnn/build/bin:$PATH

The output of the above commands are:

(py38) kuangfangjun:build$ generate-int8-scale-table
Please provide 10 arg. Currently given: 1
Usage:
generate-int8-scale-table encoder.param encoder.bin decoder.param decoder.bin joiner.
→˓param joiner.bin encoder-scale-table.txt joiner-scale-table.txt wave_filenames.txt

Each line in wave_filenames.txt is a path to some 16k Hz mono wave file.

We need to create a file wave_filenames.txt, in which we need to put some calibration wave files. For
testing purpose, we put the test_wavs from the pre-trained model repository https://huggingface.co/csukuangfj/
icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03

cd egs/librispeech/ASR
cd icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03/exp/

cat <<EOF > wave_filenames.txt
../test_wavs/1089-134686-0001.wav
../test_wavs/1221-135766-0001.wav
../test_wavs/1221-135766-0002.wav
EOF

Now we can calculate the scales needed for quantization with the calibration data:

cd egs/librispeech/ASR
cd icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03/exp/

generate-int8-scale-table \
./encoder_jit_trace-pnnx.ncnn.param \
./encoder_jit_trace-pnnx.ncnn.bin \
./decoder_jit_trace-pnnx.ncnn.param \
./decoder_jit_trace-pnnx.ncnn.bin \
./joiner_jit_trace-pnnx.ncnn.param \
./joiner_jit_trace-pnnx.ncnn.bin \
./encoder-scale-table.txt \

(continues on next page)
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(continued from previous page)

./joiner-scale-table.txt \

./wave_filenames.txt

The output logs are in the following:

Don't Use GPU. has_gpu: 0, config.use_vulkan_compute: 1
num encoder conv layers: 28
num joiner conv layers: 3
num files: 3
Processing ../test_wavs/1089-134686-0001.wav
Processing ../test_wavs/1221-135766-0001.wav
Processing ../test_wavs/1221-135766-0002.wav
Processing ../test_wavs/1089-134686-0001.wav
Processing ../test_wavs/1221-135766-0001.wav
Processing ../test_wavs/1221-135766-0002.wav
----------encoder----------
conv_15 : max = 15.942385 threshold = 15.930708 ␣
→˓ scale = 7.972025
conv_16 : max = 44.978855 threshold = 17.031788 ␣
→˓ scale = 7.456645
conv_17 : max = 17.868437 threshold = 7.830528 ␣
→˓ scale = 16.218575
linear_18 : max = 3.107259 threshold = 1.194808 ␣
→˓ scale = 106.293236
linear_19 : max = 6.193777 threshold = 4.634748 ␣
→˓ scale = 27.401705
linear_20 : max = 9.259933 threshold = 2.606617 ␣
→˓ scale = 48.722160
linear_21 : max = 5.186600 threshold = 4.790260 ␣
→˓ scale = 26.512129
linear_22 : max = 9.759041 threshold = 2.265832 ␣
→˓ scale = 56.050053
linear_23 : max = 3.931209 threshold = 3.099090 ␣
→˓ scale = 40.979767
linear_24 : max = 10.324160 threshold = 2.215561 ␣
→˓ scale = 57.321835
linear_25 : max = 3.800708 threshold = 3.599352 ␣
→˓ scale = 35.284134
linear_26 : max = 10.492444 threshold = 3.153369 ␣
→˓ scale = 40.274391
linear_27 : max = 3.660161 threshold = 2.720994 ␣
→˓ scale = 46.674126
linear_28 : max = 9.415265 threshold = 3.174434 ␣
→˓ scale = 40.007133
linear_29 : max = 4.038418 threshold = 3.118534 ␣
→˓ scale = 40.724262
linear_30 : max = 10.072084 threshold = 3.936867 ␣
→˓ scale = 32.259155
linear_31 : max = 4.342712 threshold = 3.599489 ␣
→˓ scale = 35.282787
linear_32 : max = 11.340535 threshold = 3.120308 ␣
→˓ scale = 40.701103

(continues on next page)
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(continued from previous page)

linear_33 : max = 3.846987 threshold = 3.630030 ␣
→˓ scale = 34.985939
linear_34 : max = 10.686298 threshold = 2.204571 ␣
→˓ scale = 57.607586
linear_35 : max = 4.904821 threshold = 4.575518 ␣
→˓ scale = 27.756420
linear_36 : max = 11.806659 threshold = 2.585589 ␣
→˓ scale = 49.118401
linear_37 : max = 6.402340 threshold = 5.047157 ␣
→˓ scale = 25.162680
linear_38 : max = 11.174589 threshold = 1.923361 ␣
→˓ scale = 66.030258
linear_39 : max = 16.178576 threshold = 7.556058 ␣
→˓ scale = 16.807705
linear_40 : max = 12.901954 threshold = 5.301267 ␣
→˓ scale = 23.956539
linear_41 : max = 14.839805 threshold = 7.597429 ␣
→˓ scale = 16.716181
linear_42 : max = 10.178945 threshold = 2.651595 ␣
→˓ scale = 47.895699
----------joiner----------
linear_2 : max = 24.829245 threshold = 16.627592 ␣
→˓ scale = 7.637907
linear_1 : max = 10.746186 threshold = 5.255032 ␣
→˓ scale = 24.167313
linear_3 : max = 1.000000 threshold = 0.999756 ␣
→˓ scale = 127.031013
ncnn int8 calibration table create success, best wish for your int8 inference has a low␣
→˓accuracy loss...\(^0^)/...233...

It generates the following two files:

ls -lh encoder-scale-table.txt joiner-scale-table.txt

-rw-r--r-- 1 kuangfangjun root 345K Feb 17 12:13 encoder-scale-table.txt
-rw-r--r-- 1 kuangfangjun root 17K Feb 17 12:13 joiner-scale-table.txt

Caution: Definitely, you need more calibration data to compute the scale table.

Finally, let us use the scale table to quantize our models into int8.

ncnn2int8

usage: ncnn2int8 [inparam] [inbin] [outparam] [outbin] [calibration table]

First, we quantize the encoder model:

cd egs/librispeech/ASR
cd icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03/exp/

ncnn2int8 \
(continues on next page)
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./encoder_jit_trace-pnnx.ncnn.param \

./encoder_jit_trace-pnnx.ncnn.bin \

./encoder_jit_trace-pnnx.ncnn.int8.param \

./encoder_jit_trace-pnnx.ncnn.int8.bin \

./encoder-scale-table.txt

Next, we quantize the joiner model:

ncnn2int8 \
./joiner_jit_trace-pnnx.ncnn.param \
./joiner_jit_trace-pnnx.ncnn.bin \
./joiner_jit_trace-pnnx.ncnn.int8.param \
./joiner_jit_trace-pnnx.ncnn.int8.bin \
./joiner-scale-table.txt

The above two commands generate the following 4 files:

-rw-r--r-- 1 kuangfangjun root 218M Feb 17 12:19 encoder_jit_trace-pnnx.ncnn.int8.bin
-rw-r--r-- 1 kuangfangjun root 21K Feb 17 12:19 encoder_jit_trace-pnnx.ncnn.int8.param
-rw-r--r-- 1 kuangfangjun root 774K Feb 17 12:19 joiner_jit_trace-pnnx.ncnn.int8.bin
-rw-r--r-- 1 kuangfangjun root 496 Feb 17 12:19 joiner_jit_trace-pnnx.ncnn.int8.param

Congratulations! You have successfully quantized your model from float32 to int8.

Caution: ncnn.int8.param and ncnn.int8.bin must be used in pairs.

You can replace ncnn.param and ncnn.bin with ncnn.int8.param and ncnn.int8.bin in sherpa-ncnn if you
like.

For instance, to use only the int8 encoder in sherpa-ncnn, you can replace the following invocation:

cd egs/librispeech/ASR
cd icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03/exp/

sherpa-ncnn \
../data/lang_bpe_500/tokens.txt \
./encoder_jit_trace-pnnx.ncnn.param \
./encoder_jit_trace-pnnx.ncnn.bin \
./decoder_jit_trace-pnnx.ncnn.param \
./decoder_jit_trace-pnnx.ncnn.bin \
./joiner_jit_trace-pnnx.ncnn.param \
./joiner_jit_trace-pnnx.ncnn.bin \
../test_wavs/1089-134686-0001.wav

with
cd egs/librispeech/ASR
cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/
→˓exp/

sherpa-ncnn \
../data/lang_bpe_500/tokens.txt \
./encoder_jit_trace-pnnx.ncnn.int8.param \
./encoder_jit_trace-pnnx.ncnn.int8.bin \
./decoder_jit_trace-pnnx.ncnn.param \
./decoder_jit_trace-pnnx.ncnn.bin \
./joiner_jit_trace-pnnx.ncnn.param \
./joiner_jit_trace-pnnx.ncnn.bin \
../test_wavs/1089-134686-0001.wav
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The following table compares again the file sizes:

File name File size
encoder_jit_trace-pnnx.pt 318 MB
decoder_jit_trace-pnnx.pt 1010 KB
joiner_jit_trace-pnnx.pt 3.0 MB
encoder_jit_trace-pnnx.ncnn.bin (fp16) 159 MB
decoder_jit_trace-pnnx.ncnn.bin (fp16) 503 KB
joiner_jit_trace-pnnx.ncnn.bin (fp16) 1.5 MB
encoder_jit_trace-pnnx.ncnn.bin (fp32) 317 MB
joiner_jit_trace-pnnx.ncnn.bin (fp32) 3.0 MB
encoder_jit_trace-pnnx.ncnn.int8.bin 218 MB
joiner_jit_trace-pnnx.ncnn.int8.bin 774 KB

You can see that the file size of the joiner model after int8 quantization is much smaller. However, the size of the
encoder model is even larger than the fp16 counterpart. The reason is that ncnn currently does not support quantizing
LSTM layers into 8-bit. Please see https://github.com/Tencent/ncnn/issues/4532

Hint: Currently, only linear layers and convolutional layers are quantized with int8, so you don’t see an exact 4x
reduction in file sizes.

Note: You need to test the recognition accuracy after int8 quantization.

That’s it! Have fun with sherpa-ncnn!
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CHAPTER

SIX

RECIPES

This page contains various recipes in icefall. Currently, only speech recognition recipes are provided.

We may add recipes for other tasks as well in the future.

6.1 Non Streaming ASR

6.1.1 aishell

Aishell is an open-source Chinese Mandarin speech corpus published by Beijing Shell Shell Technology Co.,Ltd.

400 people from different accent areas in China are invited to participate in the recording, which is conducted in a quiet
indoor environment using high fidelity microphone and downsampled to 16kHz. The manual transcription accuracy
is above 95%, through professional speech annotation and strict quality inspection. The data is free for academic use.
We hope to provide moderate amount of data for new researchers in the field of speech recognition.

It can be downloaded from https://www.openslr.org/33/

TDNN-LSTM CTC

This tutorial shows you how to run a tdnn-lstm ctc model with the Aishell dataset.

Hint: We assume you have read the page Installation and have setup the environment for icefall.

Hint: We recommend you to use a GPU or several GPUs to run this recipe.

In this tutorial, you will learn:

• (1) How to prepare data for training and decoding

• (2) How to start the training, either with a single GPU or multiple GPUs

• (3) How to do decoding after training.

• (4) How to use a pre-trained model, provided by us
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Data preparation

$ cd egs/aishell/ASR
$ ./prepare.sh

The script ./prepare.sh handles the data preparation for you, automagically. All you need to do is to run it.

The data preparation contains several stages, you can use the following two options:

• --stage

• --stop-stage

to control which stage(s) should be run. By default, all stages are executed.

For example,

$ cd egs/aishell/ASR
$ ./prepare.sh --stage 0 --stop-stage 0

means to run only stage 0.

To run stage 2 to stage 5, use:

$ ./prepare.sh --stage 2 --stop-stage 5

Hint: If you have pre-downloaded the Aishell dataset and the musan dataset, say, they are saved in /tmp/aishell
and /tmp/musan, you can modify the dl_dir variable in ./prepare.sh to point to /tmp so that ./prepare.sh
won’t re-download them.

Hint: A 3-gram language model will be downloaded from huggingface, we assume you have intalled and initialized
git-lfs. If not, you could install git-lfs by

$ sudo apt-get install git-lfs
$ git-lfs install

If you don’t have the sudo permission, you could download the git-lfs binary here, then add it to you PATH.

Note: All generated files by ./prepare.sh, e.g., features, lexicon, etc, are saved in ./data directory.

Training

Configurable options

$ cd egs/aishell/ASR
$ ./tdnn_lstm_ctc/train.py --help

shows you the training options that can be passed from the commandline. The following options are used quite often:
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• --num-epochs

It is the number of epochs to train. For instance, ./tdnn_lstm_ctc/train.py --num-epochs 30 trains for
30 epochs and generates epoch-0.pt, epoch-1.pt, . . . , epoch-29.pt in the folder ./tdnn_lstm_ctc/exp.

• --start-epoch

It’s used to resume training. ./tdnn_lstm_ctc/train.py --start-epoch 10 loads the checkpoint ./
tdnn_lstm_ctc/exp/epoch-9.pt and starts training from epoch 10, based on the state from epoch 9.

• --world-size

It is used for multi-GPU single-machine DDP training.

– (a) If it is 1, then no DDP training is used.

– (b) If it is 2, then GPU 0 and GPU 1 are used for DDP training.

The following shows some use cases with it.

Use case 1: You have 4 GPUs, but you only want to use GPU 0 and GPU 2 for training. You can do
the following:

$ cd egs/aishell/ASR
$ export CUDA_VISIBLE_DEVICES="0,2"
$ ./tdnn_lstm_ctc/train.py --world-size 2

Use case 2: You have 4 GPUs and you want to use all of them for training. You can do the following:

$ cd egs/aishell/ASR
$ ./tdnn_lstm_ctc/train.py --world-size 4

Use case 3: You have 4 GPUs but you only want to use GPU 3 for training. You can do the following:

$ cd egs/aishell/ASR
$ export CUDA_VISIBLE_DEVICES="3"
$ ./tdnn_lstm_ctc/train.py --world-size 1

Caution: Only multi-GPU single-machine DDP training is implemented at present. Multi-GPU multi-
machine DDP training will be added later.

• --max-duration

It specifies the number of seconds over all utterances in a batch, before padding. If you encounter CUDA OOM,
please reduce it. For instance, if your are using V100 NVIDIA GPU, we recommend you to set it to 2000.

Hint: Due to padding, the number of seconds of all utterances in a batch will usually be larger than
--max-duration.

A larger value for --max-duration may cause OOM during training, while a smaller value may increase the
training time. You have to tune it.
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Pre-configured options

There are some training options, e.g., weight decay, number of warmup steps, results dir, etc, that are not passed from
the commandline. They are pre-configured by the function get_params() in tdnn_lstm_ctc/train.py

You don’t need to change these pre-configured parameters. If you really need to change them, please modify ./
tdnn_lstm_ctc/train.py directly.

Caution: The training set is perturbed by speed with two factors: 0.9 and 1.1. Each epoch actually processes
3x150 == 450 hours of data.

Training logs

Training logs and checkpoints are saved in tdnn_lstm_ctc/exp. You will find the following files in that directory:

• epoch-0.pt, epoch-1.pt, . . .

These are checkpoint files, containing model state_dict and optimizer state_dict. To resume training from
some checkpoint, say epoch-10.pt, you can use:

$ ./tdnn_lstm_ctc/train.py --start-epoch 11

• tensorboard/

This folder contains TensorBoard logs. Training loss, validation loss, learning rate, etc, are recorded in these
logs. You can visualize them by:

$ cd tdnn_lstm_ctc/exp/tensorboard
$ tensorboard dev upload --logdir . --description "TDNN-LSTM CTC training␣
→˓for Aishell with icefall"

It will print something like below:

TensorFlow installation not found - running with reduced feature set.
Upload started and will continue reading any new data as it's added to the␣
→˓logdir.

To stop uploading, press Ctrl-C.

New experiment created. View your TensorBoard at: https://tensorboard.dev/
→˓experiment/LJI9MWUORLOw3jkdhxwk8A/

[2021-09-13T11:59:23] Started scanning logdir.
[2021-09-13T11:59:24] Total uploaded: 4454 scalars, 0 tensors, 0 binary␣
→˓objects
Listening for new data in logdir...

Note there is a URL in the above output, click it and you will see the following screenshot:

• log/log-train-xxxx

It is the detailed training log in text format, same as the one you saw printed to the console during training.
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Fig. 6.1: TensorBoard screenshot.

Usage examples

The following shows typical use cases:

Case 1

$ cd egs/aishell/ASR
$ export CUDA_VISIBLE_DEVICES="0,3"
$ ./tdnn_lstm_ctc/train.py --world-size 2

It uses GPU 0 and GPU 3 for DDP training.

Case 2

$ cd egs/aishell/ASR
$ ./tdnn_lstm_ctc/train.py --num-epochs 10 --start-epoch 3

It loads checkpoint ./tdnn_lstm_ctc/exp/epoch-2.pt and starts training from epoch 3. Also, it trains for 10
epochs.
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Decoding

The decoding part uses checkpoints saved by the training part, so you have to run the training part first.

$ cd egs/aishell/ASR
$ ./tdnn_lstm_ctc/decode.py --help

shows the options for decoding.

The commonly used options are:

• --method

This specifies the decoding method.

The following command uses attention decoder for rescoring:

$ cd egs/aishell/ASR
$ ./tdnn_lstm_ctc/decode.py --method 1best --max-duration 100

• --max-duration

It has the same meaning as the one during training. A larger value may cause OOM.

Pre-trained Model

We have uploaded a pre-trained model to https://huggingface.co/pkufool/icefall_asr_aishell_tdnn_lstm_ctc.

We describe how to use the pre-trained model to transcribe a sound file or multiple sound files in the following.

Install kaldifeat

kaldifeat is used to extract features for a single sound file or multiple sound files at the same time.

Please refer to https://github.com/csukuangfj/kaldifeat for installation.

Download the pre-trained model

The following commands describe how to download the pre-trained model:

$ cd egs/aishell/ASR
$ mkdir tmp
$ cd tmp
$ git lfs install
$ git clone https://huggingface.co/pkufool/icefall_asr_aishell_tdnn_lstm_ctc

Caution: You have to use git lfs to download the pre-trained model.

Caution: In order to use this pre-trained model, your k2 version has to be v1.7 or later.

After downloading, you will have the following files:
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$ cd egs/aishell/ASR
$ tree tmp

tmp/
`-- icefall_asr_aishell_tdnn_lstm_ctc

|-- README.md
|-- data
| `-- lang_phone
| |-- HLG.pt
| |-- tokens.txt
| `-- words.txt
|-- exp
| `-- pretrained.pt
`-- test_waves

|-- BAC009S0764W0121.wav
|-- BAC009S0764W0122.wav
|-- BAC009S0764W0123.wav
`-- trans.txt

5 directories, 9 files

File descriptions:
• data/lang_phone/HLG.pt

It is the decoding graph.

• data/lang_phone/tokens.txt

It contains tokens and their IDs. Provided only for convenience so that you can look up the SOS/EOS
ID easily.

• data/lang_phone/words.txt

It contains words and their IDs.

• exp/pretrained.pt

It contains pre-trained model parameters, obtained by averaging checkpoints from epoch-18.pt to
epoch-40.pt. Note: We have removed optimizer state_dict to reduce file size.

• test_waves/*.wav

It contains some test sound files from Aishell test dataset.

• test_waves/trans.txt

It contains the reference transcripts for the sound files in test_waves/.

The information of the test sound files is listed below:

$ soxi tmp/icefall_asr_aishell_tdnn_lstm_ctc/test_waves/*.wav

Input File : 'tmp/icefall_asr_aishell_tdnn_lstm_ctc/test_waves/BAC009S0764W0121.wav'
Channels : 1
Sample Rate : 16000
Precision : 16-bit
Duration : 00:00:04.20 = 67263 samples ~ 315.295 CDDA sectors
File Size : 135k

(continues on next page)
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Bit Rate : 256k
Sample Encoding: 16-bit Signed Integer PCM

Input File : 'tmp/icefall_asr_aishell_tdnn_lstm_ctc/test_waves/BAC009S0764W0122.wav'
Channels : 1
Sample Rate : 16000
Precision : 16-bit
Duration : 00:00:04.12 = 65840 samples ~ 308.625 CDDA sectors
File Size : 132k
Bit Rate : 256k
Sample Encoding: 16-bit Signed Integer PCM

Input File : 'tmp/icefall_asr_aishell_tdnn_lstm_ctc/test_waves/BAC009S0764W0123.wav'
Channels : 1
Sample Rate : 16000
Precision : 16-bit
Duration : 00:00:04.00 = 64000 samples ~ 300 CDDA sectors
File Size : 128k
Bit Rate : 256k
Sample Encoding: 16-bit Signed Integer PCM

Total Duration of 3 files: 00:00:12.32

Usage

$ cd egs/aishell/ASR
$ ./tdnn_lstm_ctc/pretrained.py --help

displays the help information.

HLG decoding

HLG decoding uses the best path of the decoding lattice as the decoding result.

The command to run HLG decoding is:

$ cd egs/aishell/ASR
$ ./tdnn_lstm_ctc/pretrained.py \
--checkpoint ./tmp/icefall_asr_aishell_tdnn_lstm_ctc/exp/pretrained.pt \
--words-file ./tmp/icefall_asr_aishell_tdnn_lstm_ctc/data/lang_phone/words.txt \
--HLG ./tmp/icefall_asr_aishell_tdnn_lstm_ctc/data/lang_phone/HLG.pt \
--method 1best \
./tmp/icefall_asr_aishell_tdnn_lstm_ctc/test_waves/BAC009S0764W0121.wav \
./tmp/icefall_asr_aishell_tdnn_lstm_ctc/test_waves/BAC009S0764W0122.wav \
./tmp/icefall_asr_aishell_tdnn_lstm_ctc/test_waves/BAC009S0764W0123.wav

The output is given below:
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2021-09-13 15:00:55,858 INFO [pretrained.py:140] device: cuda:0
2021-09-13 15:00:55,858 INFO [pretrained.py:142] Creating model
2021-09-13 15:01:05,389 INFO [pretrained.py:154] Loading HLG from ./tmp/icefall_asr_
→˓aishell_tdnn_lstm_ctc/data/lang_phone/HLG.pt
2021-09-13 15:01:06,531 INFO [pretrained.py:161] Constructing Fbank computer
2021-09-13 15:01:06,536 INFO [pretrained.py:171] Reading sound files: ['./tmp/icefall_
→˓asr_aishell_tdnn_lstm_ctc/test_waves/BAC009S0764W0121.wav', './tmp/icefall_asr_aishell_
→˓tdnn_lstm_ctc/test_waves/BAC009S0764W0122.wav', './tmp/icefall_asr_aishell_tdnn_lstm_
→˓ctc/test_waves/BAC009S0764W0123.wav']
2021-09-13 15:01:06,539 INFO [pretrained.py:177] Decoding started
2021-09-13 15:01:06,917 INFO [pretrained.py:207] Use HLG decoding
2021-09-13 15:01:07,129 INFO [pretrained.py:220]
./tmp/icefall_asr_aishell_tdnn_lstm_ctc/test_waves/BAC009S0764W0121.wav:

./tmp/icefall_asr_aishell_tdnn_lstm_ctc/test_waves/BAC009S0764W0122.wav:

./tmp/icefall_asr_aishell_tdnn_lstm_ctc/test_waves/BAC009S0764W0123.wav:

2021-09-13 15:01:07,129 INFO [pretrained.py:222] Decoding Done

Colab notebook

We do provide a colab notebook for this recipe showing how to use a pre-trained model.

Congratulations! You have finished the aishell ASR recipe with TDNN-LSTM CTC models in icefall.

Conformer CTC

This tutorial shows you how to run a conformer ctc model with the Aishell dataset.

Hint: We assume you have read the page Installation and have setup the environment for icefall.

Hint: We recommend you to use a GPU or several GPUs to run this recipe.

In this tutorial, you will learn:

• (1) How to prepare data for training and decoding

• (2) How to start the training, either with a single GPU or multiple GPUs

• (3) How to do decoding after training, with ctc-decoding, 1best and attention decoder rescoring

• (4) How to use a pre-trained model, provided by us
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Data preparation

$ cd egs/aishell/ASR
$ ./prepare.sh

The script ./prepare.sh handles the data preparation for you, automagically. All you need to do is to run it.

The data preparation contains several stages, you can use the following two options:

• --stage

• --stop-stage

to control which stage(s) should be run. By default, all stages are executed.

For example,

$ cd egs/aishell/ASR
$ ./prepare.sh --stage 0 --stop-stage 0

means to run only stage 0.

To run stage 2 to stage 5, use:

$ ./prepare.sh --stage 2 --stop-stage 5

Hint: If you have pre-downloaded the Aishell dataset and the musan dataset, say, they are saved in /tmp/aishell
and /tmp/musan, you can modify the dl_dir variable in ./prepare.sh to point to /tmp so that ./prepare.sh
won’t re-download them.

Hint: A 3-gram language model will be downloaded from huggingface, we assume you have intalled and initialized
git-lfs. If not, you could install git-lfs by

$ sudo apt-get install git-lfs
$ git-lfs install

If you don’t have the sudo permission, you could download the git-lfs binary here, then add it to you PATH.

Note: All generated files by ./prepare.sh, e.g., features, lexicon, etc, are saved in ./data directory.

Training

Configurable options

$ cd egs/aishell/ASR
$ ./conformer_ctc/train.py --help

shows you the training options that can be passed from the commandline. The following options are used quite often:

• --exp-dir

The experiment folder to save logs and model checkpoints, default ./conformer_ctc/exp.
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• --num-epochs

It is the number of epochs to train. For instance, ./conformer_ctc/train.py --num-epochs 30 trains for
30 epochs and generates epoch-0.pt, epoch-1.pt, . . . , epoch-29.pt in the folder set by --exp-dir.

• --start-epoch

It’s used to resume training. ./conformer_ctc/train.py --start-epoch 10 loads the checkpoint ./
conformer_ctc/exp/epoch-9.pt and starts training from epoch 10, based on the state from epoch 9.

• --world-size

It is used for multi-GPU single-machine DDP training.

– (a) If it is 1, then no DDP training is used.

– (b) If it is 2, then GPU 0 and GPU 1 are used for DDP training.

The following shows some use cases with it.

Use case 1: You have 4 GPUs, but you only want to use GPU 0 and GPU 2 for training. You can do
the following:

$ cd egs/aishell/ASR
$ export CUDA_VISIBLE_DEVICES="0,2"
$ ./conformer_ctc/train.py --world-size 2

Use case 2: You have 4 GPUs and you want to use all of them for training. You can do the following:

$ cd egs/aishell/ASR
$ ./conformer_ctc/train.py --world-size 4

Use case 3: You have 4 GPUs but you only want to use GPU 3 for training. You can do the following:

$ cd egs/aishell/ASR
$ export CUDA_VISIBLE_DEVICES="3"
$ ./conformer_ctc/train.py --world-size 1

Caution: Only multi-GPU single-machine DDP training is implemented at present. Multi-GPU multi-
machine DDP training will be added later.

• --max-duration

It specifies the number of seconds over all utterances in a batch, before padding. If you encounter CUDA OOM,
please reduce it. For instance, if your are using V100 NVIDIA GPU, we recommend you to set it to 200.

Hint: Due to padding, the number of seconds of all utterances in a batch will usually be larger than
--max-duration.

A larger value for --max-duration may cause OOM during training, while a smaller value may increase the
training time. You have to tune it.
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Pre-configured options

There are some training options, e.g., weight decay, number of warmup steps, etc, that are not passed from the com-
mandline. They are pre-configured by the function get_params() in conformer_ctc/train.py

You don’t need to change these pre-configured parameters. If you really need to change them, please modify ./
conformer_ctc/train.py directly.

Caution: The training set is perturbed by speed with two factors: 0.9 and 1.1. Each epoch actually processes
3x150 == 450 hours of data.

Training logs

Training logs and checkpoints are saved in the folder set by --exp-dir (default conformer_ctc/exp). You will find
the following files in that directory:

• epoch-0.pt, epoch-1.pt, . . .

These are checkpoint files, containing model state_dict and optimizer state_dict. To resume training from
some checkpoint, say epoch-10.pt, you can use:

$ ./conformer_ctc/train.py --start-epoch 11

• tensorboard/

This folder contains TensorBoard logs. Training loss, validation loss, learning rate, etc, are recorded in these
logs. You can visualize them by:

$ cd conformer_ctc/exp/tensorboard
$ tensorboard dev upload --logdir . --name "Aishell conformer ctc training␣
→˓with icefall" --description "Training with new LabelSmoothing loss, see␣
→˓https://github.com/k2-fsa/icefall/pull/109"

It will print something like below:

TensorFlow installation not found - running with reduced feature set.
Upload started and will continue reading any new data as it's added to the␣
→˓logdir.

To stop uploading, press Ctrl-C.

New experiment created. View your TensorBoard at: https://tensorboard.dev/
→˓experiment/engw8KSkTZqS24zBV5dgCg/

[2021-11-22T11:09:27] Started scanning logdir.
[2021-11-22T11:10:14] Total uploaded: 116068 scalars, 0 tensors, 0 binary␣
→˓objects
Listening for new data in logdir...

Note there is a URL in the above output, click it and you will see the following screenshot:

• log/log-train-xxxx

It is the detailed training log in text format, same as the one you saw printed to the console during training.
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Fig. 6.2: TensorBoard screenshot.

Usage examples

The following shows typical use cases:

Case 1

$ cd egs/aishell/ASR
$ ./conformer_ctc/train.py --max-duration 200

It uses --max-duration of 200 to avoid OOM.

Case 2

$ cd egs/aishell/ASR
$ export CUDA_VISIBLE_DEVICES="0,3"
$ ./conformer_ctc/train.py --world-size 2

It uses GPU 0 and GPU 3 for DDP training.

Case 3

$ cd egs/aishell/ASR
$ ./conformer_ctc/train.py --num-epochs 10 --start-epoch 3

It loads checkpoint ./conformer_ctc/exp/epoch-2.pt and starts training from epoch 3. Also, it trains for 10
epochs.
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Decoding

The decoding part uses checkpoints saved by the training part, so you have to run the training part first.

$ cd egs/aishell/ASR
$ ./conformer_ctc/decode.py --help

shows the options for decoding.

The commonly used options are:

• --method

This specifies the decoding method.

The following command uses attention decoder for rescoring:

$ cd egs/aishell/ASR
$ ./conformer_ctc/decode.py --method attention-decoder --max-duration 30 --nbest-
→˓scale 0.5

• --nbest-scale

It is used to scale down lattice scores so that there are more unique paths for rescoring.

• --max-duration

It has the same meaning as the one during training. A larger value may cause OOM.

Pre-trained Model

We have uploaded a pre-trained model to https://huggingface.co/pkufool/icefall_asr_aishell_conformer_ctc.

We describe how to use the pre-trained model to transcribe a sound file or multiple sound files in the following.

Install kaldifeat

kaldifeat is used to extract features for a single sound file or multiple sound files at the same time.

Please refer to https://github.com/csukuangfj/kaldifeat for installation.

Download the pre-trained model

The following commands describe how to download the pre-trained model:

$ cd egs/aishell/ASR
$ mkdir tmp
$ cd tmp
$ git lfs install
$ git clone https://huggingface.co/pkufool/icefall_asr_aishell_conformer_ctc

Caution: You have to use git lfs to download the pre-trained model.
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Caution: In order to use this pre-trained model, your k2 version has to be v1.7 or later.

After downloading, you will have the following files:

$ cd egs/aishell/ASR
$ tree tmp

tmp/
`-- icefall_asr_aishell_conformer_ctc

|-- README.md
|-- data
| `-- lang_char
| |-- HLG.pt
| |-- tokens.txt
| `-- words.txt
|-- exp
| `-- pretrained.pt
`-- test_waves

|-- BAC009S0764W0121.wav
|-- BAC009S0764W0122.wav
|-- BAC009S0764W0123.wav
`-- trans.txt

5 directories, 9 files

File descriptions:
• data/lang_char/HLG.pt

It is the decoding graph.

• data/lang_char/tokens.txt

It contains tokens and their IDs. Provided only for convenience so that you can look up the SOS/EOS
ID easily.

• data/lang_char/words.txt

It contains words and their IDs.

• exp/pretrained.pt

It contains pre-trained model parameters, obtained by averaging checkpoints from epoch-25.pt to
epoch-84.pt. Note: We have removed optimizer state_dict to reduce file size.

• test_waves/*.wav

It contains some test sound files from Aishell test dataset.

• test_waves/trans.txt

It contains the reference transcripts for the sound files in test_waves/.

The information of the test sound files is listed below:

$ soxi tmp/icefall_asr_aishell_conformer_ctc/test_waves/*.wav

Input File : 'tmp/icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0121.wav'
(continues on next page)
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Channels : 1
Sample Rate : 16000
Precision : 16-bit
Duration : 00:00:04.20 = 67263 samples ~ 315.295 CDDA sectors
File Size : 135k
Bit Rate : 256k
Sample Encoding: 16-bit Signed Integer PCM

Input File : 'tmp/icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0122.wav'
Channels : 1
Sample Rate : 16000
Precision : 16-bit
Duration : 00:00:04.12 = 65840 samples ~ 308.625 CDDA sectors
File Size : 132k
Bit Rate : 256k
Sample Encoding: 16-bit Signed Integer PCM

Input File : 'tmp/icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0123.wav'
Channels : 1
Sample Rate : 16000
Precision : 16-bit
Duration : 00:00:04.00 = 64000 samples ~ 300 CDDA sectors
File Size : 128k
Bit Rate : 256k
Sample Encoding: 16-bit Signed Integer PCM

Total Duration of 3 files: 00:00:12.32

Usage

$ cd egs/aishell/ASR
$ ./conformer_ctc/pretrained.py --help

displays the help information.

It supports three decoding methods:

• CTC decoding

• HLG decoding

• HLG + attention decoder rescoring
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CTC decoding

CTC decoding only uses the ctc topology for decoding without a lexicon and language model

The command to run CTC decoding is:

$ cd egs/aishell/ASR
$ ./conformer_ctc/pretrained.py \
--checkpoint ./tmp/icefall_asr_aishell_conformer_ctc/exp/pretrained.pt \
--tokens-file ./tmp/icefall_asr_aishell_conformer_ctc/data/lang_char/tokens.txt \
--method ctc-decoding \
./tmp/icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0121.wav \
./tmp/icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0122.wav \
./tmp/icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0123.wav

The output is given below:

2021-11-18 07:53:41,707 INFO [pretrained.py:229] {'sample_rate': 16000, 'subsampling_
→˓factor': 4, 'feature_dim': 80, 'nhead': 4, 'attention_dim': 512, 'num_decoder_layers':␣
→˓6, 'vgg_frontend': False, 'use_feat_batchnorm': True, 'search_beam': 20, 'output_beam
→˓': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True,
→˓'env_info': {'k2-version': '1.9', 'k2-build-type': 'Release', 'k2-with-cuda': True,
→˓'k2-git-sha1': 'f2fd997f752ed11bbef4c306652c433e83f9cf12', 'k2-git-date': 'Sun Sep 19␣
→˓09:41:46 2021', 'lhotse-version': '0.11.0.dev+git.33cfe45.clean', 'torch-cuda-available
→˓': True, 'torch-cuda-version': '10.1', 'python-version': '3.8', 'icefall-git-branch':
→˓'aishell', 'icefall-git-sha1': 'd57a873-dirty', 'icefall-git-date': 'Wed Nov 17␣
→˓19:53:25 2021', 'icefall-path': '/ceph-hw/kangwei/code/icefall_aishell3', 'k2-path': '/
→˓ceph-hw/kangwei/code/k2_release/k2/k2/python/k2/__init__.py', 'lhotse-path': '/ceph-hw/
→˓kangwei/code/lhotse/lhotse/__init__.py'}, 'checkpoint': './tmp/icefall_asr_aishell_
→˓conformer_ctc/exp/pretrained.pt', 'tokens_file': './tmp/icefall_asr_aishell_conformer_
→˓ctc/data/lang_char/tokens.txt', 'words_file': None, 'HLG': None, 'method': 'ctc-
→˓decoding', 'num_paths': 100, 'ngram_lm_scale': 0.3, 'attention_decoder_scale': 0.9,
→˓'nbest_scale': 0.5, 'sos_id': 1, 'eos_id': 1, 'num_classes': 4336, 'sound_files': ['./
→˓tmp/icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0121.wav', './tmp/icefall_
→˓asr_aishell_conformer_ctc/test_waves/BAC009S0764W0122.wav', './tmp/icefall_asr_aishell_
→˓conformer_ctc/test_waves/BAC009S0764W0123.wav']}
2021-11-18 07:53:41,708 INFO [pretrained.py:240] device: cuda:0
2021-11-18 07:53:41,708 INFO [pretrained.py:242] Creating model
2021-11-18 07:53:51,131 INFO [pretrained.py:259] Constructing Fbank computer
2021-11-18 07:53:51,134 INFO [pretrained.py:269] Reading sound files: ['./tmp/icefall_
→˓asr_aishell_conformer_ctc/test_waves/BAC009S0764W0121.wav', './tmp/icefall_asr_aishell_
→˓conformer_ctc/test_waves/BAC009S0764W0122.wav', './tmp/icefall_asr_aishell_conformer_
→˓ctc/test_waves/BAC009S0764W0123.wav']
2021-11-18 07:53:51,138 INFO [pretrained.py:275] Decoding started
2021-11-18 07:53:51,241 INFO [pretrained.py:293] Use CTC decoding
2021-11-18 07:53:51,704 INFO [pretrained.py:369]
./tmp/icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0121.wav:

./tmp/icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0122.wav:

./tmp/icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0123.wav:

(continues on next page)
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2021-11-18 07:53:51,704 INFO [pretrained.py:371] Decoding Done

HLG decoding

HLG decoding uses the best path of the decoding lattice as the decoding result.

The command to run HLG decoding is:

$ cd egs/aishell/ASR
$ ./conformer_ctc/pretrained.py \
--checkpoint ./tmp/icefall_asr_aishell_conformer_ctc/exp/pretrained.pt \
--words-file ./tmp/icefall_asr_aishell_conformer_ctc/data/lang_char/words.txt \
--HLG ./tmp/icefall_asr_aishell_conformer_ctc/data/lang_char/HLG.pt \
--method 1best \
./tmp/icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0121.wav \
./tmp/icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0122.wav \
./tmp/icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0123.wav

The output is given below:

2021-11-18 07:37:38,683 INFO [pretrained.py:229] {'sample_rate': 16000, 'subsampling_
→˓factor': 4, 'feature_dim': 80, 'nhead': 4, 'attention_dim': 512, 'num_decoder_layers':␣
→˓6, 'vgg_frontend': False, 'use_feat_batchnorm': True, 'search_beam': 20, 'output_beam
→˓': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True,
→˓'env_info': {'k2-version': '1.9', 'k2-build-type': 'Release', 'k2-with-cuda': True,
→˓'k2-git-sha1': 'f2fd997f752ed11bbef4c306652c433e83f9cf12', 'k2-git-date': 'Sun Sep 19␣
→˓09:41:46 2021', 'lhotse-version': '0.11.0.dev+git.33cfe45.clean', 'torch-cuda-available
→˓': True, 'torch-cuda-version': '10.1', 'python-version': '3.8', 'icefall-git-branch':
→˓'aishell', 'icefall-git-sha1': 'd57a873-clean', 'icefall-git-date': 'Wed Nov 17␣
→˓19:53:25 2021', 'icefall-path': '/ceph-hw/kangwei/code/icefall_aishell3', 'k2-path': '/
→˓ceph-hw/kangwei/code/k2_release/k2/k2/python/k2/__init__.py', 'lhotse-path': '/ceph-hw/
→˓kangwei/code/lhotse/lhotse/__init__.py'}, 'checkpoint': './tmp/icefall_asr_aishell_
→˓conformer_ctc/exp/pretrained.pt', 'tokens_file': None, 'words_file': './tmp/icefall_
→˓asr_aishell_conformer_ctc/data/lang_char/words.txt', 'HLG': './tmp/icefall_asr_aishell_
→˓conformer_ctc/data/lang_char/HLG.pt', 'method': '1best', 'num_paths': 100, 'ngram_lm_
→˓scale': 0.3, 'attention_decoder_scale': 0.9, 'nbest_scale': 0.5, 'sos_id': 1, 'eos_id
→˓': 1, 'num_classes': 4336, 'sound_files': ['./tmp/icefall_asr_aishell_conformer_ctc/
→˓test_waves/BAC009S0764W0121.wav', './tmp/icefall_asr_aishell_conformer_ctc/test_waves/
→˓BAC009S0764W0122.wav', './tmp/icefall_asr_aishell_conformer_ctc/test_waves/
→˓BAC009S0764W0123.wav']}
2021-11-18 07:37:38,684 INFO [pretrained.py:240] device: cuda:0
2021-11-18 07:37:38,684 INFO [pretrained.py:242] Creating model
2021-11-18 07:37:47,651 INFO [pretrained.py:259] Constructing Fbank computer
2021-11-18 07:37:47,654 INFO [pretrained.py:269] Reading sound files: ['./tmp/icefall_
→˓asr_aishell_conformer_ctc/test_waves/BAC009S0764W0121.wav', './tmp/icefall_asr_aishell_
→˓conformer_ctc/test_waves/BAC009S0764W0122.wav', './tmp/icefall_asr_aishell_conformer_
→˓ctc/test_waves/BAC009S0764W0123.wav']
2021-11-18 07:37:47,659 INFO [pretrained.py:275] Decoding started
2021-11-18 07:37:47,752 INFO [pretrained.py:321] Loading HLG from ./tmp/icefall_asr_

(continues on next page)
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→˓aishell_conformer_ctc/data/lang_char/HLG.pt
2021-11-18 07:37:51,887 INFO [pretrained.py:340] Use HLG decoding
2021-11-18 07:37:52,102 INFO [pretrained.py:370]
./tmp/icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0121.wav:

./tmp/icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0122.wav:

./tmp/icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0123.wav:

2021-11-18 07:37:52,102 INFO [pretrained.py:372] Decoding Done

HLG decoding + attention decoder rescoring

It extracts n paths from the lattice, recores the extracted paths with an attention decoder. The path with the highest
score is the decoding result.

The command to run HLG decoding + attention decoder rescoring is:

$ cd egs/aishell/ASR
$ ./conformer_ctc/pretrained.py \
--checkpoint ./tmp/icefall_asr_aishell_conformer_ctc/exp/pretrained.pt \
--words-file ./tmp/icefall_asr_aishell_conformer_ctc/data/lang_char/words.txt \
--HLG ./tmp/icefall_asr_aishell_conformer_ctc/data/lang_char/HLG.pt \
--method attention-decoder \
./tmp/icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0121.wav \
./tmp/icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0122.wav \
./tmp/icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0123.wav

The output is below:

2021-11-18 07:42:05,965 INFO [pretrained.py:229] {'sample_rate': 16000, 'subsampling_
→˓factor': 4, 'feature_dim': 80, 'nhead': 4, 'attention_dim': 512, 'num_decoder_layers':␣
→˓6, 'vgg_frontend': False, 'use_feat_batchnorm': True, 'search_beam': 20, 'output_beam
→˓': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True,
→˓'env_info': {'k2-version': '1.9', 'k2-build-type': 'Release', 'k2-with-cuda': True,
→˓'k2-git-sha1': 'f2fd997f752ed11bbef4c306652c433e83f9cf12', 'k2-git-date': 'Sun Sep 19␣
→˓09:41:46 2021', 'lhotse-version': '0.11.0.dev+git.33cfe45.clean', 'torch-cuda-available
→˓': True, 'torch-cuda-version': '10.1', 'python-version': '3.8', 'icefall-git-branch':
→˓'aishell', 'icefall-git-sha1': 'd57a873-dirty', 'icefall-git-date': 'Wed Nov 17␣
→˓19:53:25 2021', 'icefall-path': '/ceph-hw/kangwei/code/icefall_aishell3', 'k2-path': '/
→˓ceph-hw/kangwei/code/k2_release/k2/k2/python/k2/__init__.py', 'lhotse-path': '/ceph-hw/
→˓kangwei/code/lhotse/lhotse/__init__.py'}, 'checkpoint': './tmp/icefall_asr_aishell_
→˓conformer_ctc/exp/pretrained.pt', 'tokens_file': None, 'words_file': './tmp/icefall_
→˓asr_aishell_conformer_ctc/data/lang_char/words.txt', 'HLG': './tmp/icefall_asr_aishell_
→˓conformer_ctc/data/lang_char/HLG.pt', 'method': 'attention-decoder', 'num_paths': 100,
→˓'ngram_lm_scale': 0.3, 'attention_decoder_scale': 0.9, 'nbest_scale': 0.5, 'sos_id': 1,
→˓ 'eos_id': 1, 'num_classes': 4336, 'sound_files': ['./tmp/icefall_asr_aishell_

(continues on next page)
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→˓conformer_ctc/test_waves/BAC009S0764W0121.wav', './tmp/icefall_asr_aishell_conformer_
→˓ctc/test_waves/BAC009S0764W0122.wav', './tmp/icefall_asr_aishell_conformer_ctc/test_
→˓waves/BAC009S0764W0123.wav']}
2021-11-18 07:42:05,966 INFO [pretrained.py:240] device: cuda:0
2021-11-18 07:42:05,966 INFO [pretrained.py:242] Creating model
2021-11-18 07:42:16,821 INFO [pretrained.py:259] Constructing Fbank computer
2021-11-18 07:42:16,822 INFO [pretrained.py:269] Reading sound files: ['./tmp/icefall_
→˓asr_aishell_conformer_ctc/test_waves/BAC009S0764W0121.wav', './tmp/icefall_asr_aishell_
→˓conformer_ctc/test_waves/BAC009S0764W0122.wav', './tmp/icefall_asr_aishell_conformer_
→˓ctc/test_waves/BAC009S0764W0123.wav']
2021-11-18 07:42:16,826 INFO [pretrained.py:275] Decoding started
2021-11-18 07:42:16,916 INFO [pretrained.py:321] Loading HLG from ./tmp/icefall_asr_
→˓aishell_conformer_ctc/data/lang_char/HLG.pt
2021-11-18 07:42:21,115 INFO [pretrained.py:345] Use HLG + attention decoder rescoring
2021-11-18 07:42:21,888 INFO [pretrained.py:370]
./tmp/icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0121.wav:

./tmp/icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0122.wav:

./tmp/icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0123.wav:

2021-11-18 07:42:21,889 INFO [pretrained.py:372] Decoding Done

Colab notebook

We do provide a colab notebook for this recipe showing how to use a pre-trained model.

Hint: Due to limited memory provided by Colab, you have to upgrade to Colab Pro to run HLG decoding +
attention decoder rescoring. Otherwise, you can only run HLG decoding with Colab.

Congratulations! You have finished the aishell ASR recipe with conformer CTC models in icefall.

If you want to deploy your trained model in C++, please read the following section.

Deployment with C++

This section describes how to deploy the pre-trained model in C++, without Python dependencies.

Hint: At present, it does NOT support streaming decoding.

First, let us compile k2 from source:
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$ cd $HOME
$ git clone https://github.com/k2-fsa/k2
$ cd k2
$ git checkout v2.0-pre

Caution: You have to switch to the branch v2.0-pre!

$ mkdir build-release
$ cd build-release
$ cmake -DCMAKE_BUILD_TYPE=Release ..
$ make -j hlg_decode

# You will find four binaries in `./bin`, i.e. ./bin/hlg_decode,

Now you are ready to go!

Assume you have run:

$ cd k2/build-release
$ ln -s /path/to/icefall-asr-aishell-conformer-ctc ./

To view the usage of ./bin/hlg_decode, run:

$ ./bin/hlg_decode

It will show you the following message:

Please provide --nn_model

This file implements decoding with an HLG decoding graph.

Usage:
./bin/hlg_decode \
--use_gpu true \
--nn_model <path to torch scripted pt file> \
--hlg <path to HLG.pt> \
--word_table <path to words.txt> \
<path to foo.wav> \
<path to bar.wav> \
<more waves if any>

To see all possible options, use
./bin/hlg_decode --help

Caution:
- Only sound files (*.wav) with single channel are supported.
- It assumes the model is conformer_ctc/transformer.py from icefall.
If you use a different model, you have to change the code
related to `model.forward` in this file.

6.1. Non Streaming ASR 113



icefall, Release 0.1

HLG decoding

./bin/hlg_decode \
--use_gpu true \
--nn_model icefall_asr_aishell_conformer_ctc/exp/cpu_jit.pt \
--hlg icefall_asr_aishell_conformer_ctc/data/lang_char/HLG.pt \
--word_table icefall_asr_aishell_conformer_ctc/data/lang_char/words.txt \
icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0121.wav \
icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0122.wav \
icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0123.wav

The output is:

2021-11-18 14:48:20.89 [I] k2/torch/bin/hlg_decode.cu:115:int main(int, char**) Device:␣
→˓cpu
2021-11-18 14:48:20.89 [I] k2/torch/bin/hlg_decode.cu:124:int main(int, char**) Load␣
→˓wave files
2021-11-18 14:48:20.97 [I] k2/torch/bin/hlg_decode.cu:131:int main(int, char**) Build␣
→˓Fbank computer
2021-11-18 14:48:20.98 [I] k2/torch/bin/hlg_decode.cu:142:int main(int, char**) Compute␣
→˓features
2021-11-18 14:48:20.115 [I] k2/torch/bin/hlg_decode.cu:150:int main(int, char**) Load␣
→˓neural network model
2021-11-18 14:48:20.693 [I] k2/torch/bin/hlg_decode.cu:165:int main(int, char**) Compute␣
→˓nnet_output
2021-11-18 14:48:23.182 [I] k2/torch/bin/hlg_decode.cu:180:int main(int, char**) Load␣
→˓icefall_asr_aishell_conformer_ctc/data/lang_char/HLG.pt
2021-11-18 14:48:33.489 [I] k2/torch/bin/hlg_decode.cu:185:int main(int, char**) Decoding
2021-11-18 14:48:45.217 [I] k2/torch/bin/hlg_decode.cu:216:int main(int, char**)
Decoding result:

icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0121.wav

icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0122.wav

icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0123.wav

There is a Colab notebook showing you how to run a torch scripted model in C++. Please see

Stateless Transducer

This tutorial shows you how to do transducer training in icefall.

Hint: Instead of using RNN-T or RNN transducer, we only use transducer here. As you will see, there are no RNNs
in the model.

Hint: We assume you have read the page Installation and have setup the environment for icefall.
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Hint: We recommend you to use a GPU or several GPUs to run this recipe.

In this tutorial, you will learn:

• (1) What does the transducer model look like

• (2) How to prepare data for training and decoding

• (3) How to start the training, either with a single GPU or with multiple GPUs

• (4) How to do decoding after training, with greedy search, beam search and, modified beam search
• (5) How to use a pre-trained model provided by us to transcribe sound files

The Model

The transducer model consists of 3 parts:

• Encoder: It is a conformer encoder with the following parameters

– Number of heads: 8

– Attention dim: 512

– Number of layers: 12

– Feedforward dim: 2048

• Decoder: We use a stateless model consisting of:

– An embedding layer with embedding dim 512

– A Conv1d layer with a default kernel size 2 (i.e. it sees 2 symbols of left-context by default)

• Joiner: It consists of a nn.tanh() and a nn.Linear().

Caution: The decoder is stateless and very simple. It is borrowed from https://ieeexplore.ieee.org/stamp/stamp.
jsp?arnumber=9054419 (Rnn-Transducer with Stateless Prediction Network)

We make one modification to it: Place a Conv1d layer right after the embedding layer.

When using Chinese characters as modelling unit, whose vocabulary size is 4336 in this specific dataset, the number
of parameters of the model is 87939824, i.e., about 88 M.

The Loss

We are using https://github.com/csukuangfj/optimized_transducer to compute the transducer loss, which removes extra
paddings in loss computation to save memory.

Hint: optimized_transducer implements the technqiues proposed in Improving RNN Transducer Modeling for
End-to-End Speech Recognition to save memory.

Furthermore, it supports modified transducer, limiting the maximum number of symbols that can be emitted per
frame to 1, which simplifies the decoding process significantly. Also, the experiment results show that it does not
degrade the performance.

See https://github.com/csukuangfj/optimized_transducer#modified-transducer for what exactly modified transducer is.
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https://github.com/csukuangfj/transducer-loss-benchmarking shows that in the unpruned case
optimized_transducer has the advantage about minimizing memory usage.

Todo: Add tutorial about pruned_transducer_stateless that uses k2 pruned transducer loss.

Hint: You can use:

pip install optimized_transducer

to install optimized_transducer. Refer to https://github.com/csukuangfj/optimized_transducer for other alterna-
tives.

Data Preparation

To prepare the data for training, please use the following commands:

cd egs/aishell/ASR
./prepare.sh --stop-stage 4
./prepare.sh --stage 6 --stop-stage 6

Note: You can use ./prepare.sh, though it will generate FSTs that are not used in transducer training.

When you finish running the script, you will get the following two folders:

• data/fbank: It saves the pre-computed features

• data/lang_char: It contains tokens that will be used in the training

Training

cd egs/aishell/ASR
./transducer_stateless_modified/train.py --help

shows you the training options that can be passed from the commandline. The following options are used quite often:

• --exp-dir

The experiment folder to save logs and model checkpoints, defaults to ./transducer_stateless_modified/
exp.

• --num-epochs

It is the number of epochs to train. For instance, ./transducer_stateless_modified/train.py
--num-epochs 30 trains for 30 epochs and generates epoch-0.pt, epoch-1.pt, . . . , epoch-29.pt in the
folder set by --exp-dir.

• --start-epoch

It’s used to resume training. ./transducer_stateless_modified/train.py --start-epoch 10 loads
the checkpoint from exp_dir/epoch-9.pt and starts training from epoch 10, based on the state from epoch 9.
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• --world-size

It is used for single-machine multi-GPU DDP training.

– (a) If it is 1, then no DDP training is used.

– (b) If it is 2, then GPU 0 and GPU 1 are used for DDP training.

The following shows some use cases with it.

Use case 1: You have 4 GPUs, but you only want to use GPU 0 and GPU 2 for training. You can do
the following:

$ cd egs/aishell/ASR
$ export CUDA_VISIBLE_DEVICES="0,2"
$ ./transducer_stateless_modified/train.py --world-size 2

Use case 2: You have 4 GPUs and you want to use all of them for training. You can do the following:

$ cd egs/aishell/ASR
$ ./transducer_stateless_modified/train.py --world-size 4

Use case 3: You have 4 GPUs but you only want to use GPU 3 for training. You can do the following:

$ cd egs/aishell/ASR
$ export CUDA_VISIBLE_DEVICES="3"
$ ./transducer_stateless_modified/train.py --world-size 1

Caution: Only single-machine multi-GPU DDP training is implemented at present. There is an on-going
PR https://github.com/k2-fsa/icefall/pull/63 that adds support for multi-machine multi-GPU DDP training.

• --max-duration

It specifies the number of seconds over all utterances in a batch before padding. If you encounter CUDA OOM,
please reduce it. For instance, if your are using V100 NVIDIA GPU with 32 GB RAM, we recommend you to
set it to 300 when the vocabulary size is 500.

Hint: Due to padding, the number of seconds of all utterances in a batch will usually be larger than
--max-duration.

A larger value for --max-duration may cause OOM during training, while a smaller value may increase the
training time. You have to tune it.

• --lr-factor

It controls the learning rate. If you use a single GPU for training, you may want to use a small value for it. If you
use multiple GPUs for training, you may increase it.

• --context-size

It specifies the kernel size in the decoder. The default value 2 means it functions as a tri-gram LM.

• --modified-transducer-prob

It specifies the probability to use modified transducer loss. If it is 0, then no modified transducer is used; if it is
1, then it uses modified transducer loss for all batches. If it is p, it applies modified transducer with probability
p.
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There are some training options, e.g., number of warmup steps, that are not passed from the commandline. They are
pre-configured by the function get_params() in transducer_stateless_modified/train.py

If you need to change them, please modify ./transducer_stateless_modified/train.py directly.

Caution: The training set is perturbed by speed with two factors: 0.9 and 1.1. Each epoch actually processes
3x150 == 450 hours of data.

Training logs

Training logs and checkpoints are saved in the folder set by --exp-dir (defaults to
transducer_stateless_modified/exp). You will find the following files in that directory:

• epoch-0.pt, epoch-1.pt, . . .

These are checkpoint files, containing model state_dict and optimizer state_dict. To resume training from
some checkpoint, say epoch-10.pt, you can use:

$ ./transducer_stateless_modified/train.py --start-epoch 11

• tensorboard/

This folder contains TensorBoard logs. Training loss, validation loss, learning rate, etc, are recorded in these
logs. You can visualize them by:

$ cd transducer_stateless_modified/exp/tensorboard
$ tensorboard dev upload --logdir . --name "Aishell transducer training␣
→˓with icefall" --description "Training modified transducer, see https://
→˓github.com/k2-fsa/icefall/pull/219"

It will print something like below:

TensorFlow installation not found - running with reduced feature set.
Upload started and will continue reading any new data as it's added to the␣
→˓logdir.

To stop uploading, press Ctrl-C.

New experiment created. View your TensorBoard at: https://tensorboard.dev/
→˓experiment/laGZ6HrcQxOigbFD5E0Y3Q/

[2022-03-03T14:29:45] Started scanning logdir.
[2022-03-03T14:29:48] Total uploaded: 8477 scalars, 0 tensors, 0 binary␣
→˓objects
Listening for new data in logdir...

Note there is a URL in the above output, click it and you will see the following screenshot:

• log/log-train-xxxx

It is the detailed training log in text format, same as the one you saw printed to the console during training.
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Fig. 6.3: TensorBoard screenshot.

Usage examples

The following shows typical use cases:

Case 1

$ cd egs/aishell/ASR
$ ./transducer_stateless_modified/train.py --max-duration 250

It uses --max-duration of 250 to avoid OOM.

Case 2

$ cd egs/aishell/ASR
$ export CUDA_VISIBLE_DEVICES="0,3"
$ ./transducer_stateless_modified/train.py --world-size 2

It uses GPU 0 and GPU 3 for DDP training.
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Case 3

$ cd egs/aishell/ASR
$ ./transducer_stateless_modified/train.py --num-epochs 10 --start-epoch 3

It loads checkpoint ./transducer_stateless_modified/exp/epoch-2.pt and starts training from epoch 3. Also,
it trains for 10 epochs.

Decoding

The decoding part uses checkpoints saved by the training part, so you have to run the training part first.

$ cd egs/aishell/ASR
$ ./transducer_stateless_modified/decode.py --help

shows the options for decoding.

The commonly used options are:

• --method

This specifies the decoding method. Currently, it supports:

– greedy_search. You can provide the commandline option --max-sym-per-frame to limit the maximum
number of symbols that can be emitted per frame.

– beam_search. You can provide the commandline option --beam-size.

– modified_beam_search. You can also provide the commandline option --beam-size. To use this
method, we assume that you have trained your model with modified transducer, i.e., used the option
--modified-transducer-prob in the training.

The following command uses greedy search for decoding

$ cd egs/aishell/ASR
$ ./transducer_stateless_modified/decode.py \

--epoch 64 \
--avg 33 \
--exp-dir ./transducer_stateless_modified/exp \
--max-duration 100 \
--decoding-method greedy_search \
--max-sym-per-frame 1

The following command uses beam search for decoding

$ cd egs/aishell/ASR
$ ./transducer_stateless_modified/decode.py \

--epoch 64 \
--avg 33 \
--exp-dir ./transducer_stateless_modified/exp \
--max-duration 100 \
--decoding-method beam_search \
--beam-size 4

The following command uses modified beam search for decoding
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$ cd egs/aishell/ASR
$ ./transducer_stateless_modified/decode.py \

--epoch 64 \
--avg 33 \
--exp-dir ./transducer_stateless_modified/exp \
--max-duration 100 \
--decoding-method modified_beam_search \
--beam-size 4

• --max-duration

It has the same meaning as the one used in training. A larger value may cause OOM.

• --epoch

It specifies the checkpoint from which epoch that should be used for decoding.

• --avg

It specifies the number of models to average. For instance, if it is 3 and if --epoch=10, then it averages the
checkpoints epoch-8.pt, epoch-9.pt, and epoch-10.pt and the averaged checkpoint is used for decoding.

After decoding, you can find the decoding logs and results in exp_dir/log/<decoding_method>, e.g., exp_dir/log/
greedy_search.

Pre-trained Model

We have uploaded a pre-trained model to https://huggingface.co/csukuangfj/
icefall-aishell-transducer-stateless-modified-2022-03-01

We describe how to use the pre-trained model to transcribe a sound file or multiple sound files in the following.

Install kaldifeat

kaldifeat is used to extract features for a single sound file or multiple sound files at the same time.

Please refer to https://github.com/csukuangfj/kaldifeat for installation.

Download the pre-trained model

The following commands describe how to download the pre-trained model:

$ cd egs/aishell/ASR
$ mkdir tmp
$ cd tmp
$ git lfs install
$ git clone https://huggingface.co/csukuangfj/icefall-aishell-transducer-stateless-
→˓modified-2022-03-01

Caution: You have to use git lfs to download the pre-trained model.

After downloading, you will have the following files:

6.1. Non Streaming ASR 121

https://huggingface.co/csukuangfj/icefall-aishell-transducer-stateless-modified-2022-03-01
https://huggingface.co/csukuangfj/icefall-aishell-transducer-stateless-modified-2022-03-01
https://github.com/csukuangfj/kaldifeat
https://github.com/csukuangfj/kaldifeat


icefall, Release 0.1

$ cd egs/aishell/ASR
$ tree tmp/icefall-aishell-transducer-stateless-modified-2022-03-01

tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/
|-- README.md
|-- data
| `-- lang_char
| |-- L.pt
| |-- lexicon.txt
| |-- tokens.txt
| `-- words.txt
|-- exp
| `-- pretrained.pt
|-- log
| |-- errs-test-beam_4-epoch-64-avg-33-beam-4.txt
| |-- errs-test-greedy_search-epoch-64-avg-33-context-2-max-sym-per-frame-1.txt
| |-- log-decode-epoch-64-avg-33-beam-4-2022-03-02-12-05-03
| |-- log-decode-epoch-64-avg-33-context-2-max-sym-per-frame-1-2022-02-28-18-13-07
| |-- recogs-test-beam_4-epoch-64-avg-33-beam-4.txt
| `-- recogs-test-greedy_search-epoch-64-avg-33-context-2-max-sym-per-frame-1.txt
`-- test_wavs

|-- BAC009S0764W0121.wav
|-- BAC009S0764W0122.wav
|-- BAC009S0764W0123.wav
`-- transcript.txt

5 directories, 16 files

File descriptions:
• data/lang_char

It contains language related files. You can find the vocabulary size in tokens.txt.

• exp/pretrained.pt

It contains pre-trained model parameters, obtained by averaging checkpoints from epoch-32.pt to
epoch-64.pt. Note: We have removed optimizer state_dict to reduce file size.

• log

It contains decoding logs and decoded results.

• test_wavs

It contains some test sound files from Aishell test dataset.

The information of the test sound files is listed below:

$ soxi tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/*.wav

Input File : 'tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/
→˓BAC009S0764W0121.wav'
Channels : 1
Sample Rate : 16000
Precision : 16-bit
Duration : 00:00:04.20 = 67263 samples ~ 315.295 CDDA sectors

(continues on next page)
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File Size : 135k
Bit Rate : 256k
Sample Encoding: 16-bit Signed Integer PCM

Input File : 'tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/
→˓BAC009S0764W0122.wav'
Channels : 1
Sample Rate : 16000
Precision : 16-bit
Duration : 00:00:04.12 = 65840 samples ~ 308.625 CDDA sectors
File Size : 132k
Bit Rate : 256k
Sample Encoding: 16-bit Signed Integer PCM

Input File : 'tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/
→˓BAC009S0764W0123.wav'
Channels : 1
Sample Rate : 16000
Precision : 16-bit
Duration : 00:00:04.00 = 64000 samples ~ 300 CDDA sectors
File Size : 128k
Bit Rate : 256k
Sample Encoding: 16-bit Signed Integer PCM

Total Duration of 3 files: 00:00:12.32

Usage

$ cd egs/aishell/ASR
$ ./transducer_stateless_modified/pretrained.py --help

displays the help information.

It supports three decoding methods:

• greedy search

• beam search

• modified beam search

Note: In modified beam search, it limits the maximum number of symbols that can be emitted per frame to 1. To use
this method, you have to ensure that your model has been trained with the option --modified-transducer-prob.
Otherwise, it may give you poor results.
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Greedy search

The command to run greedy search is given below:

$ cd egs/aishell/ASR
$ ./transducer_stateless_modified/pretrained.py \

--checkpoint ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/exp/
→˓pretrained.pt \

--lang-dir ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/data/lang_
→˓char \

--method greedy_search \
./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/

→˓BAC009S0764W0121.wav \
./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/

→˓BAC009S0764W0122.wav \
./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/

→˓BAC009S0764W0123.wav

The output is as follows:

2022-03-03 15:35:26,531 INFO [pretrained.py:239] device: cuda:0
2022-03-03 15:35:26,994 INFO [lexicon.py:176] Loading pre-compiled tmp/icefall-aishell-
→˓transducer-stateless-modified-2022-03-01/data/lang_char/Linv.pt
2022-03-03 15:35:27,027 INFO [pretrained.py:246] {'feature_dim': 80, 'encoder_out_dim':␣
→˓512, 'subsampling_factor': 4, 'attention_dim': 512, 'nhead': 8, 'dim_feedforward':␣
→˓2048, 'num_encoder_layers': 12, 'vgg_frontend': False, 'env_info': {'k2-version': '1.13
→˓', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1':
→˓'f4fefe4882bc0ae59af951da3f47335d5495ef71', 'k2-git-date': 'Thu Feb 10 15:16:02 2022',
→˓'lhotse-version': '1.0.0.dev+missing.version.file', 'torch-cuda-available': True,
→˓'torch-cuda-version': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'master',
→˓'icefall-git-sha1': '50d2281-clean', 'icefall-git-date': 'Wed Mar 2 16:02:38 2022',
→˓'icefall-path': '/ceph-fj/fangjun/open-source-2/icefall-aishell', 'k2-path': '/ceph-fj/
→˓fangjun/open-source-2/k2-multi-datasets/k2/python/k2/__init__.py', 'lhotse-path': '/
→˓ceph-fj/fangjun/open-source-2/lhotse-aishell/lhotse/__init__.py', 'hostname': 'de-
→˓74279-k2-train-2-0815224919-75d558775b-mmnv8', 'IP address': '10.177.72.138'}, 'sample_
→˓rate': 16000, 'checkpoint': './tmp/icefall-aishell-transducer-stateless-modified-2022-
→˓03-01/exp/pretrained.pt', 'lang_dir': PosixPath('tmp/icefall-aishell-transducer-
→˓stateless-modified-2022-03-01/data/lang_char'), 'method': 'greedy_search', 'sound_files
→˓': ['./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/
→˓BAC009S0764W0121.wav', './tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/
→˓test_wavs/BAC009S0764W0122.wav', './tmp/icefall-aishell-transducer-stateless-modified-
→˓2022-03-01/test_wavs/BAC009S0764W0123.wav'], 'beam_size': 4, 'context_size': 2, 'max_
→˓sym_per_frame': 3, 'blank_id': 0, 'vocab_size': 4336}
2022-03-03 15:35:27,027 INFO [pretrained.py:248] About to create model
2022-03-03 15:35:36,878 INFO [pretrained.py:257] Constructing Fbank computer
2022-03-03 15:35:36,880 INFO [pretrained.py:267] Reading sound files: ['./tmp/icefall-
→˓aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0121.wav', './
→˓tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/
→˓BAC009S0764W0122.wav', './tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/
→˓test_wavs/BAC009S0764W0123.wav']
2022-03-03 15:35:36,891 INFO [pretrained.py:273] Decoding started
/ceph-fj/fangjun/open-source-2/icefall-aishell/egs/aishell/ASR/transducer_stateless_
→˓modified/conformer.py:113: UserWarning: __floordiv__ is deprecated, and its behavior␣

(continues on next page)
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→˓will change in a future version of pytorch. It currently rounds toward 0 (like the
→˓'trunc' function NOT 'floor'). This results in incorrect rounding for negative values.␣
→˓To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for␣
→˓actual floor division, use torch.div(a, b, rounding_mode='floor').
lengths = ((x_lens - 1) // 2 - 1) // 2

2022-03-03 15:35:37,163 INFO [pretrained.py:320]
./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/
→˓BAC009S0764W0121.wav:

./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/
→˓BAC009S0764W0122.wav:

./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/
→˓BAC009S0764W0123.wav:

2022-03-03 15:35:37,163 INFO [pretrained.py:322] Decoding Done

Beam search

The command to run beam search is given below:

$ cd egs/aishell/ASR

$ ./transducer_stateless_modified/pretrained.py \
--checkpoint ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/exp/

→˓pretrained.pt \
--lang-dir ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/data/lang_

→˓char \
--method beam_search \
--beam-size 4 \
./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/

→˓BAC009S0764W0121.wav \
./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/

→˓BAC009S0764W0122.wav \
./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/

→˓BAC009S0764W0123.wav

The output is as follows:

2022-03-03 15:39:09,285 INFO [pretrained.py:239] device: cuda:0
2022-03-03 15:39:09,708 INFO [lexicon.py:176] Loading pre-compiled tmp/icefall-aishell-
→˓transducer-stateless-modified-2022-03-01/data/lang_char/Linv.pt
2022-03-03 15:39:09,759 INFO [pretrained.py:246] {'feature_dim': 80, 'encoder_out_dim':␣
→˓512, 'subsampling_factor': 4, 'attention_dim': 512, 'nhead': 8, 'dim_feedforward':␣
→˓2048, 'num_encoder_layers': 12, 'vgg_frontend': False, 'env_info': {'k2-version': '1.13
→˓', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1':
→˓'f4fefe4882bc0ae59af951da3f47335d5495ef71', 'k2-git-date': 'Thu Feb 10 15:16:02 2022',
→˓'lhotse-version': '1.0.0.dev+missing.version.file', 'torch-cuda-available': True,

(continues on next page)
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→˓'torch-cuda-version': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'master',
→˓'icefall-git-sha1': '50d2281-clean', 'icefall-git-date': 'Wed Mar 2 16:02:38 2022',
→˓'icefall-path': '/ceph-fj/fangjun/open-source-2/icefall-aishell', 'k2-path': '/ceph-fj/
→˓fangjun/open-source-2/k2-multi-datasets/k2/python/k2/__init__.py', 'lhotse-path': '/
→˓ceph-fj/fangjun/open-source-2/lhotse-aishell/lhotse/__init__.py', 'hostname': 'de-
→˓74279-k2-train-2-0815224919-75d558775b-mmnv8', 'IP address': '10.177.72.138'}, 'sample_
→˓rate': 16000, 'checkpoint': './tmp/icefall-aishell-transducer-stateless-modified-2022-
→˓03-01/exp/pretrained.pt', 'lang_dir': PosixPath('tmp/icefall-aishell-transducer-
→˓stateless-modified-2022-03-01/data/lang_char'), 'method': 'beam_search', 'sound_files
→˓': ['./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/
→˓BAC009S0764W0121.wav', './tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/
→˓test_wavs/BAC009S0764W0122.wav', './tmp/icefall-aishell-transducer-stateless-modified-
→˓2022-03-01/test_wavs/BAC009S0764W0123.wav'], 'beam_size': 4, 'context_size': 2, 'max_
→˓sym_per_frame': 3, 'blank_id': 0, 'vocab_size': 4336}
2022-03-03 15:39:09,760 INFO [pretrained.py:248] About to create model
2022-03-03 15:39:18,919 INFO [pretrained.py:257] Constructing Fbank computer
2022-03-03 15:39:18,922 INFO [pretrained.py:267] Reading sound files: ['./tmp/icefall-
→˓aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0121.wav', './
→˓tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/
→˓BAC009S0764W0122.wav', './tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/
→˓test_wavs/BAC009S0764W0123.wav']
2022-03-03 15:39:18,929 INFO [pretrained.py:273] Decoding started
/ceph-fj/fangjun/open-source-2/icefall-aishell/egs/aishell/ASR/transducer_stateless_
→˓modified/conformer.py:113: UserWarning: __floordiv__ is deprecated, and its behavior␣
→˓will change in a future version of pytorch. It currently rounds toward 0 (like the
→˓'trunc' function NOT 'floor'). This results in incorrect rounding for negative values.␣
→˓To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for␣
→˓actual floor division, use torch.div(a, b, rounding_mode='floor').
lengths = ((x_lens - 1) // 2 - 1) // 2

2022-03-03 15:39:21,046 INFO [pretrained.py:320]
./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/
→˓BAC009S0764W0121.wav:

./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/
→˓BAC009S0764W0122.wav:

./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/
→˓BAC009S0764W0123.wav:

2022-03-03 15:39:21,047 INFO [pretrained.py:322] Decoding Done
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Modified Beam search

The command to run modified beam search is given below:

$ cd egs/aishell/ASR

$ ./transducer_stateless_modified/pretrained.py \
--checkpoint ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/exp/

→˓pretrained.pt \
--lang-dir ./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/data/lang_

→˓char \
--method modified_beam_search \
--beam-size 4 \
./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/

→˓BAC009S0764W0121.wav \
./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/

→˓BAC009S0764W0122.wav \
./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/

→˓BAC009S0764W0123.wav

The output is as follows:

2022-03-03 15:41:23,319 INFO [pretrained.py:239] device: cuda:0
2022-03-03 15:41:23,798 INFO [lexicon.py:176] Loading pre-compiled tmp/icefall-aishell-
→˓transducer-stateless-modified-2022-03-01/data/lang_char/Linv.pt
2022-03-03 15:41:23,831 INFO [pretrained.py:246] {'feature_dim': 80, 'encoder_out_dim':␣
→˓512, 'subsampling_factor': 4, 'attention_dim': 512, 'nhead': 8, 'dim_feedforward':␣
→˓2048, 'num_encoder_layers': 12, 'vgg_frontend': False, 'env_info': {'k2-version': '1.13
→˓', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1':
→˓'f4fefe4882bc0ae59af951da3f47335d5495ef71', 'k2-git-date': 'Thu Feb 10 15:16:02 2022',
→˓'lhotse-version': '1.0.0.dev+missing.version.file', 'torch-cuda-available': True,
→˓'torch-cuda-version': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'master',
→˓'icefall-git-sha1': '50d2281-clean', 'icefall-git-date': 'Wed Mar 2 16:02:38 2022',
→˓'icefall-path': '/ceph-fj/fangjun/open-source-2/icefall-aishell', 'k2-path': '/ceph-fj/
→˓fangjun/open-source-2/k2-multi-datasets/k2/python/k2/__init__.py', 'lhotse-path': '/
→˓ceph-fj/fangjun/open-source-2/lhotse-aishell/lhotse/__init__.py', 'hostname': 'de-
→˓74279-k2-train-2-0815224919-75d558775b-mmnv8', 'IP address': '10.177.72.138'}, 'sample_
→˓rate': 16000, 'checkpoint': './tmp/icefall-aishell-transducer-stateless-modified-2022-
→˓03-01/exp/pretrained.pt', 'lang_dir': PosixPath('tmp/icefall-aishell-transducer-
→˓stateless-modified-2022-03-01/data/lang_char'), 'method': 'modified_beam_search',
→˓'sound_files': ['./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_
→˓wavs/BAC009S0764W0121.wav', './tmp/icefall-aishell-transducer-stateless-modified-2022-
→˓03-01/test_wavs/BAC009S0764W0122.wav', './tmp/icefall-aishell-transducer-stateless-
→˓modified-2022-03-01/test_wavs/BAC009S0764W0123.wav'], 'beam_size': 4, 'context_size':␣
→˓2, 'max_sym_per_frame': 3, 'blank_id': 0, 'vocab_size': 4336}
2022-03-03 15:41:23,831 INFO [pretrained.py:248] About to create model
2022-03-03 15:41:32,214 INFO [pretrained.py:257] Constructing Fbank computer
2022-03-03 15:41:32,215 INFO [pretrained.py:267] Reading sound files: ['./tmp/icefall-
→˓aishell-transducer-stateless-modified-2022-03-01/test_wavs/BAC009S0764W0121.wav', './
→˓tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/
→˓BAC009S0764W0122.wav', './tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/
→˓test_wavs/BAC009S0764W0123.wav']
2022-03-03 15:41:32,220 INFO [pretrained.py:273] Decoding started

(continues on next page)
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/ceph-fj/fangjun/open-source-2/icefall-aishell/egs/aishell/ASR/transducer_stateless_
→˓modified/conformer.py:113: UserWarning: __floordiv__ is deprecated, and its behavior␣
→˓will change in a future version of pytorch. It currently rounds toward 0 (like the
→˓'trunc' function NOT 'floor'). This results in incorrect rounding for negative values.␣
→˓To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for␣
→˓actual floor division, use torch.div(a, b, rounding_mode='floor').
lengths = ((x_lens - 1) // 2 - 1) // 2

/ceph-fj/fangjun/open-source-2/icefall-aishell/egs/aishell/ASR/transducer_stateless_
→˓modified/beam_search.py:402: UserWarning: __floordiv__ is deprecated, and its behavior␣
→˓will change in a future version of pytorch. It currently rounds toward 0 (like the
→˓'trunc' function NOT 'floor'). This results in incorrect rounding for negative values.␣
→˓To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for␣
→˓actual floor division, use torch.div(a, b, rounding_mode='floor').
topk_hyp_indexes = topk_indexes // logits.size(-1)

2022-03-03 15:41:32,583 INFO [pretrained.py:320]
./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/
→˓BAC009S0764W0121.wav:

./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/
→˓BAC009S0764W0122.wav:

./tmp/icefall-aishell-transducer-stateless-modified-2022-03-01/test_wavs/
→˓BAC009S0764W0123.wav:

2022-03-03 15:41:32,583 INFO [pretrained.py:322] Decoding Done

Colab notebook

We provide a colab notebook for this recipe showing how to use a pre-trained model to transcribe sound files.

6.1.2 LibriSpeech

TDNN-LSTM-CTC

This tutorial shows you how to run a TDNN-LSTM-CTC model with the LibriSpeech dataset.

Hint: We assume you have read the page Installation and have setup the environment for icefall.
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Data preparation

$ cd egs/librispeech/ASR
$ ./prepare.sh

The script ./prepare.sh handles the data preparation for you, automagically. All you need to do is to run it.

The data preparation contains several stages, you can use the following two options:

• --stage

• --stop-stage

to control which stage(s) should be run. By default, all stages are executed.

For example,

$ cd egs/librispeech/ASR
$ ./prepare.sh --stage 0 --stop-stage 0

means to run only stage 0.

To run stage 2 to stage 5, use:

$ ./prepare.sh --stage 2 --stop-stage 5

We provide the following YouTube video showing how to run ./prepare.sh.

Note: To get the latest news of next-gen Kaldi, please subscribe the following YouTube channel by Nadira Povey:

https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw

https://youtu.be/ofEIoJL-mGM

Training

Now describing the training of TDNN-LSTM-CTC model, contained in the tdnn_lstm_ctc folder.

The command to run the training part is:

$ cd egs/librispeech/ASR
$ export CUDA_VISIBLE_DEVICES="0,1,2,3"
$ ./tdnn_lstm_ctc/train.py --world-size 4

By default, it will run 20 epochs. Training logs and checkpoints are saved in tdnn_lstm_ctc/exp.

In tdnn_lstm_ctc/exp, you will find the following files:

• epoch-0.pt, epoch-1.pt, . . . , epoch-19.pt

These are checkpoint files, containing model state_dict and optimizer state_dict. To resume training from
some checkpoint, say epoch-10.pt, you can use:

$ ./tdnn_lstm_ctc/train.py --start-epoch 11
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• tensorboard/

This folder contains TensorBoard logs. Training loss, validation loss, learning rate, etc, are recorded in these
logs. You can visualize them by:

$ cd tdnn_lstm_ctc/exp/tensorboard
$ tensorboard dev upload --logdir . --description "TDNN LSTM training for␣
→˓librispeech with icefall"

• log/log-train-xxxx

It is the detailed training log in text format, same as the one you saw printed to the console during training.

To see available training options, you can use:

$ ./tdnn_lstm_ctc/train.py --help

Other training options, e.g., learning rate, results dir, etc., are pre-configured in the function get_params() in
tdnn_lstm_ctc/train.py. Normally, you don’t need to change them. You can change them by modifying the code, if
you want.

Decoding

The decoding part uses checkpoints saved by the training part, so you have to run the training part first.

The command for decoding is:

$ export CUDA_VISIBLE_DEVICES="0"
$ ./tdnn_lstm_ctc/decode.py

You will see the WER in the output log.

Decoded results are saved in tdnn_lstm_ctc/exp.

$ ./tdnn_lstm_ctc/decode.py --help

shows you the available decoding options.

Some commonly used options are:

• --epoch

You can select which checkpoint to be used for decoding. For instance, ./tdnn_lstm_ctc/decode.py
--epoch 10 means to use ./tdnn_lstm_ctc/exp/epoch-10.pt for decoding.

• --avg

It’s related to model averaging. It specifies number of checkpoints to be averaged. The averaged model is used
for decoding. For example, the following command:

$ ./tdnn_lstm_ctc/decode.py --epoch 10 --avg 3

uses the average of epoch-8.pt, epoch-9.pt and epoch-10.pt for decoding.

• --export

If it is True, i.e., ./tdnn_lstm_ctc/decode.py --export 1, the code will save the averaged model to
tdnn_lstm_ctc/exp/pretrained.pt. See Pre-trained Model for how to use it.
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Pre-trained Model

We have uploaded the pre-trained model to https://huggingface.co/pkufool/icefall_asr_librispeech_tdnn-lstm_ctc.

The following shows you how to use the pre-trained model.

Install kaldifeat

kaldifeat is used to extract features for a single sound file or multiple sound files at the same time.

Please refer to https://github.com/csukuangfj/kaldifeat for installation.

Download the pre-trained model

$ cd egs/librispeech/ASR
$ mkdir tmp
$ cd tmp
$ git lfs install
$ git clone https://huggingface.co/pkufool/icefall_asr_librispeech_tdnn-lstm_ctc

Caution: You have to use git lfs to download the pre-trained model.

Caution: In order to use this pre-trained model, your k2 version has to be v1.7 or later.

After downloading, you will have the following files:

$ cd egs/librispeech/ASR
$ tree tmp

tmp/
`-- icefall_asr_librispeech_tdnn-lstm_ctc

|-- README.md
|-- data
| |-- lang_phone
| | |-- HLG.pt
| | |-- tokens.txt
| | `-- words.txt
| `-- lm
| `-- G_4_gram.pt
|-- exp
| `-- pretrained.pt
`-- test_wavs

|-- 1089-134686-0001.flac
|-- 1221-135766-0001.flac
|-- 1221-135766-0002.flac
`-- trans.txt

6 directories, 10 files
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File descriptions:
• data/lang_phone/HLG.pt

It is the decoding graph.

• data/lang_phone/tokens.txt

It contains tokens and their IDs.

• data/lang_phone/words.txt

It contains words and their IDs.

• data/lm/G_4_gram.pt

It is a 4-gram LM, useful for LM rescoring.

• exp/pretrained.pt

It contains pre-trained model parameters, obtained by averaging checkpoints from epoch-14.pt to
epoch-19.pt. Note: We have removed optimizer state_dict to reduce file size.

• test_waves/*.flac

It contains some test sound files from LibriSpeech test-clean dataset.

• test_waves/trans.txt

It contains the reference transcripts for the sound files in test_waves/.

The information of the test sound files is listed below:

$ soxi tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/*.flac

Input File : 'tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.
→˓flac'
Channels : 1
Sample Rate : 16000
Precision : 16-bit
Duration : 00:00:06.62 = 106000 samples ~ 496.875 CDDA sectors
File Size : 116k
Bit Rate : 140k
Sample Encoding: 16-bit FLAC

Input File : 'tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.
→˓flac'
Channels : 1
Sample Rate : 16000
Precision : 16-bit
Duration : 00:00:16.71 = 267440 samples ~ 1253.62 CDDA sectors
File Size : 343k
Bit Rate : 164k
Sample Encoding: 16-bit FLAC

Input File : 'tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.
→˓flac'
Channels : 1
Sample Rate : 16000

(continues on next page)
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(continued from previous page)

Precision : 16-bit
Duration : 00:00:04.83 = 77200 samples ~ 361.875 CDDA sectors
File Size : 105k
Bit Rate : 174k
Sample Encoding: 16-bit FLAC

Total Duration of 3 files: 00:00:28.16

Inference with a pre-trained model

$ cd egs/librispeech/ASR
$ ./tdnn_lstm_ctc/pretrained.py --help

shows the usage information of ./tdnn_lstm_ctc/pretrained.py.

To decode with 1best method, we can use:

./tdnn_lstm_ctc/pretrained.py \
--checkpoint ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/exp/pretraind.pt \
--words-file ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/words.txt \
--HLG ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/HLG.pt \
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac \
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac \
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac

The output is:

2021-08-24 16:57:13,315 INFO [pretrained.py:168] device: cuda:0
2021-08-24 16:57:13,315 INFO [pretrained.py:170] Creating model
2021-08-24 16:57:18,331 INFO [pretrained.py:182] Loading HLG from ./tmp/icefall_asr_
→˓librispeech_tdnn-lstm_ctc/data/lang_phone/HLG.pt
2021-08-24 16:57:27,581 INFO [pretrained.py:199] Constructing Fbank computer
2021-08-24 16:57:27,584 INFO [pretrained.py:209] Reading sound files: ['./tmp/icefall_
→˓asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_
→˓librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_
→˓librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac']
2021-08-24 16:57:27,599 INFO [pretrained.py:215] Decoding started
2021-08-24 16:57:27,791 INFO [pretrained.py:245] Use HLG decoding
2021-08-24 16:57:28,098 INFO [pretrained.py:266]
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac:
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER␣
→˓OF THE BROTHELS

./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac:
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY␣
→˓CHILD WHOSE PLACE WAS ON THAT SAME DISHONORED BOSOM TO CONNECT HER PARENT FOREVER WITH␣
→˓THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN

./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac:
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION

(continues on next page)
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(continued from previous page)

2021-08-24 16:57:28,099 INFO [pretrained.py:268] Decoding Done

To decode with whole-lattice-rescoring methond, you can use

./tdnn_lstm_ctc/pretrained.py \
--checkpoint ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/exp/pretraind.pt \
--words-file ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/words.txt \
--HLG ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/HLG.pt \
--method whole-lattice-rescoring \
--G ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lm/G_4_gram.pt \
--ngram-lm-scale 0.8 \
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac \
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac \
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac

The decoding output is:

2021-08-24 16:39:24,725 INFO [pretrained.py:168] device: cuda:0
2021-08-24 16:39:24,725 INFO [pretrained.py:170] Creating model
2021-08-24 16:39:29,403 INFO [pretrained.py:182] Loading HLG from ./tmp/icefall_asr_
→˓librispeech_tdnn-lstm_ctc/data/lang_phone/HLG.pt
2021-08-24 16:39:40,631 INFO [pretrained.py:190] Loading G from ./tmp/icefall_asr_
→˓librispeech_tdnn-lstm_ctc/data/lm/G_4_gram.pt
2021-08-24 16:39:53,098 INFO [pretrained.py:199] Constructing Fbank computer
2021-08-24 16:39:53,107 INFO [pretrained.py:209] Reading sound files: ['./tmp/icefall_
→˓asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_
→˓librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_
→˓librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac']
2021-08-24 16:39:53,121 INFO [pretrained.py:215] Decoding started
2021-08-24 16:39:53,443 INFO [pretrained.py:250] Use HLG decoding + LM rescoring
2021-08-24 16:39:54,010 INFO [pretrained.py:266]
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac:
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER␣
→˓OF THE BROTHELS

./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac:
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY␣
→˓CHILD WHOSE PLACE WAS ON THAT SAME DISHONORED BOSOM TO CONNECT HER PARENT FOREVER WITH␣
→˓THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN

./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac:
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION

2021-08-24 16:39:54,010 INFO [pretrained.py:268] Decoding Done
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Colab notebook

We provide a colab notebook for decoding with pre-trained model.

Congratulations! You have finished the TDNN-LSTM-CTC recipe on librispeech in icefall.

Conformer CTC

This tutorial shows you how to run a conformer ctc model with the LibriSpeech dataset.

Hint: We assume you have read the page Installation and have setup the environment for icefall.

Hint: We recommend you to use a GPU or several GPUs to run this recipe.

In this tutorial, you will learn:

• (1) How to prepare data for training and decoding

• (2) How to start the training, either with a single GPU or multiple GPUs

• (3) How to do decoding after training, with n-gram LM rescoring and attention decoder rescoring

• (4) How to use a pre-trained model, provided by us

• (5) How to deploy your trained model in C++, without Python dependencies

Data preparation

$ cd egs/librispeech/ASR
$ ./prepare.sh

The script ./prepare.sh handles the data preparation for you, automagically. All you need to do is to run it.

The data preparation contains several stages, you can use the following two options:

• --stage

• --stop-stage

to control which stage(s) should be run. By default, all stages are executed.

For example,

$ cd egs/librispeech/ASR
$ ./prepare.sh --stage 0 --stop-stage 0

means to run only stage 0.

To run stage 2 to stage 5, use:

$ ./prepare.sh --stage 2 --stop-stage 5
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Hint: If you have pre-downloaded the LibriSpeech dataset and the musan dataset, say, they are saved in /tmp/
LibriSpeech and /tmp/musan, you can modify the dl_dir variable in ./prepare.sh to point to /tmp so that
./prepare.sh won’t re-download them.

Note: All generated files by ./prepare.sh, e.g., features, lexicon, etc, are saved in ./data directory.

We provide the following YouTube video showing how to run ./prepare.sh.

Note: To get the latest news of next-gen Kaldi, please subscribe the following YouTube channel by Nadira Povey:

https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw

https://youtu.be/ofEIoJL-mGM

Training

Configurable options

$ cd egs/librispeech/ASR
$ ./conformer_ctc/train.py --help

shows you the training options that can be passed from the commandline. The following options are used quite often:

• --full-libri

If it’s True, the training part uses all the training data, i.e., 960 hours. Otherwise, the training part uses only the
subset train-clean-100, which has 100 hours of training data.

Caution: The training set is perturbed by speed with two factors: 0.9 and 1.1. If --full-libri is True,
each epoch actually processes 3x960 == 2880 hours of data.

• --num-epochs

It is the number of epochs to train. For instance, ./conformer_ctc/train.py --num-epochs 30 trains for
30 epochs and generates epoch-0.pt, epoch-1.pt, . . . , epoch-29.pt in the folder ./conformer_ctc/exp.

• --start-epoch

It’s used to resume training. ./conformer_ctc/train.py --start-epoch 10 loads the checkpoint ./
conformer_ctc/exp/epoch-9.pt and starts training from epoch 10, based on the state from epoch 9.

• --world-size

It is used for multi-GPU single-machine DDP training.

– (a) If it is 1, then no DDP training is used.

– (b) If it is 2, then GPU 0 and GPU 1 are used for DDP training.

The following shows some use cases with it.

Use case 1: You have 4 GPUs, but you only want to use GPU 0 and GPU 2 for training. You can do
the following:
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$ cd egs/librispeech/ASR
$ export CUDA_VISIBLE_DEVICES="0,2"
$ ./conformer_ctc/train.py --world-size 2

Use case 2: You have 4 GPUs and you want to use all of them for training. You can do the following:

$ cd egs/librispeech/ASR
$ ./conformer_ctc/train.py --world-size 4

Use case 3: You have 4 GPUs but you only want to use GPU 3 for training. You can do the following:

$ cd egs/librispeech/ASR
$ export CUDA_VISIBLE_DEVICES="3"
$ ./conformer_ctc/train.py --world-size 1

Caution: Only multi-GPU single-machine DDP training is implemented at present. Multi-GPU multi-
machine DDP training will be added later.

• --max-duration

It specifies the number of seconds over all utterances in a batch, before padding. If you encounter CUDA OOM,
please reduce it. For instance, if your are using V100 NVIDIA GPU, we recommend you to set it to 200.

Hint: Due to padding, the number of seconds of all utterances in a batch will usually be larger than
--max-duration.

A larger value for --max-duration may cause OOM during training, while a smaller value may increase the
training time. You have to tune it.

Pre-configured options

There are some training options, e.g., weight decay, number of warmup steps, results dir, etc, that are not passed from
the commandline. They are pre-configured by the function get_params() in conformer_ctc/train.py

You don’t need to change these pre-configured parameters. If you really need to change them, please modify ./
conformer_ctc/train.py directly.

Training logs

Training logs and checkpoints are saved in conformer_ctc/exp. You will find the following files in that directory:

• epoch-0.pt, epoch-1.pt, . . .

These are checkpoint files, containing model state_dict and optimizer state_dict. To resume training from
some checkpoint, say epoch-10.pt, you can use:

$ ./conformer_ctc/train.py --start-epoch 11

• tensorboard/

This folder contains TensorBoard logs. Training loss, validation loss, learning rate, etc, are recorded in these
logs. You can visualize them by:
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$ cd conformer_ctc/exp/tensorboard
$ tensorboard dev upload --logdir . --description "Conformer CTC training␣
→˓for LibriSpeech with icefall"

It will print something like below:

TensorFlow installation not found - running with reduced feature set.
Upload started and will continue reading any new data as it's added to the␣
→˓logdir.

To stop uploading, press Ctrl-C.

New experiment created. View your TensorBoard at: https://tensorboard.dev/
→˓experiment/lzGnETjwRxC3yghNMd4kPw/

[2021-08-24T16:42:43] Started scanning logdir.
Uploading 4540 scalars...

Note there is a URL in the above output, click it and you will see the following screenshot:

Fig. 6.4: TensorBoard screenshot.
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• log/log-train-xxxx

It is the detailed training log in text format, same as the one you saw printed to the console during training.

Usage examples

The following shows typical use cases:

Case 1

$ cd egs/librispeech/ASR
$ ./conformer_ctc/train.py --max-duration 200 --full-libri 0

It uses --max-duration of 200 to avoid OOM. Also, it uses only a subset of the LibriSpeech data for training.

Case 2

$ cd egs/librispeech/ASR
$ export CUDA_VISIBLE_DEVICES="0,3"
$ ./conformer_ctc/train.py --world-size 2

It uses GPU 0 and GPU 3 for DDP training.

Case 3

$ cd egs/librispeech/ASR
$ ./conformer_ctc/train.py --num-epochs 10 --start-epoch 3

It loads checkpoint ./conformer_ctc/exp/epoch-2.pt and starts training from epoch 3. Also, it trains for 10
epochs.

Decoding

The decoding part uses checkpoints saved by the training part, so you have to run the training part first.

$ cd egs/librispeech/ASR
$ ./conformer_ctc/decode.py --help

shows the options for decoding.

The commonly used options are:

• --method

This specifies the decoding method. This script supports 7 decoding methods. As for ctc decoding, it uses a
sentence piece model to convert word pieces to words. And it needs neither a lexicon nor an n-gram LM.

For example, the following command uses CTC topology for decoding:
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$ cd egs/librispeech/ASR
$ ./conformer_ctc/decode.py --method ctc-decoding --max-duration 300
# Caution: The above command is tested with a model with vocab size 500.

And the following command uses attention decoder for rescoring:

$ cd egs/librispeech/ASR
$ ./conformer_ctc/decode.py --method attention-decoder --max-duration 30 --nbest-
→˓scale 0.5

• --nbest-scale

It is used to scale down lattice scores so that there are more unique paths for rescoring.

• --max-duration

It has the same meaning as the one during training. A larger value may cause OOM.

Here are some results for CTC decoding with a vocab size of 500:

Usage:

$ cd egs/librispeech/ASR
# NOTE: Tested with a model with vocab size 500.
# It won't work for a model with vocab size 5000.
$ ./conformer_ctc/decode.py \

--epoch 25 \
--avg 1 \
--max-duration 300 \
--exp-dir conformer_ctc/exp \
--lang-dir data/lang_bpe_500 \
--method ctc-decoding

The output is given below:

2021-09-26 12:44:31,033 INFO [decode.py:537] Decoding started
2021-09-26 12:44:31,033 INFO [decode.py:538]
{'lm_dir': PosixPath('data/lm'), 'subsampling_factor': 4, 'vgg_frontend': False, 'use_
→˓feat_batchnorm': True,
'feature_dim': 80, 'nhead': 8, 'attention_dim': 512, 'num_decoder_layers': 6, 'search_
→˓beam': 20, 'output_beam': 8,
'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True,
'epoch': 25, 'avg': 1, 'method': 'ctc-decoding', 'num_paths': 100, 'nbest_scale': 0.5,
'export': False, 'exp_dir': PosixPath('conformer_ctc/exp'), 'lang_dir': PosixPath('data/
→˓lang_bpe_500'), 'full_libri': False,
'feature_dir': PosixPath('data/fbank'), 'max_duration': 100, 'bucketing_sampler': False,
→˓'num_buckets': 30,
'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False,
'shuffle': True, 'return_cuts': True, 'num_workers': 2}
2021-09-26 12:44:31,406 INFO [lexicon.py:113] Loading pre-compiled data/lang_bpe_500/
→˓Linv.pt
2021-09-26 12:44:31,464 INFO [decode.py:548] device: cuda:0
2021-09-26 12:44:36,171 INFO [checkpoint.py:92] Loading checkpoint from conformer_ctc/
→˓exp/epoch-25.pt
2021-09-26 12:44:36,776 INFO [decode.py:652] Number of model parameters: 109226120
2021-09-26 12:44:37,714 INFO [decode.py:473] batch 0/206, cuts processed until now is 12
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2021-09-26 12:45:15,944 INFO [decode.py:473] batch 100/206, cuts processed until now is␣
→˓1328
2021-09-26 12:45:54,443 INFO [decode.py:473] batch 200/206, cuts processed until now is␣
→˓2563
2021-09-26 12:45:56,411 INFO [decode.py:494] The transcripts are stored in conformer_ctc/
→˓exp/recogs-test-clean-ctc-decoding.txt
2021-09-26 12:45:56,592 INFO [utils.py:331] [test-clean-ctc-decoding] %WER 3.26% [1715 /␣
→˓52576, 163 ins, 128 del, 1424 sub ]
2021-09-26 12:45:56,807 INFO [decode.py:506] Wrote detailed error stats to conformer_ctc/
→˓exp/errs-test-clean-ctc-decoding.txt
2021-09-26 12:45:56,808 INFO [decode.py:522]
For test-clean, WER of different settings are:
ctc-decoding 3.26 best for test-clean

2021-09-26 12:45:57,362 INFO [decode.py:473] batch 0/203, cuts processed until now is 15
2021-09-26 12:46:35,565 INFO [decode.py:473] batch 100/203, cuts processed until now is␣
→˓1477
2021-09-26 12:47:15,106 INFO [decode.py:473] batch 200/203, cuts processed until now is␣
→˓2922
2021-09-26 12:47:16,131 INFO [decode.py:494] The transcripts are stored in conformer_ctc/
→˓exp/recogs-test-other-ctc-decoding.txt
2021-09-26 12:47:16,208 INFO [utils.py:331] [test-other-ctc-decoding] %WER 8.21% [4295 /␣
→˓52343, 396 ins, 315 del, 3584 sub ]
2021-09-26 12:47:16,432 INFO [decode.py:506] Wrote detailed error stats to conformer_ctc/
→˓exp/errs-test-other-ctc-decoding.txt
2021-09-26 12:47:16,432 INFO [decode.py:522]
For test-other, WER of different settings are:
ctc-decoding 8.21 best for test-other

2021-09-26 12:47:16,433 INFO [decode.py:680] Done!

Pre-trained Model

We have uploaded a pre-trained model to https://huggingface.co/csukuangfj/
icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09

We describe how to use the pre-trained model to transcribe a sound file or multiple sound files in the following.
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Install kaldifeat

kaldifeat is used to extract features for a single sound file or multiple sound files at the same time.

Please refer to https://github.com/csukuangfj/kaldifeat for installation.

Download the pre-trained model

The following commands describe how to download the pre-trained model:

$ cd egs/librispeech/ASR
$ git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-conformer-ctc-jit-
→˓bpe-500-2021-11-09
$ cd icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09
$ git lfs pull

Caution: You have to use git lfs pull to download the pre-trained model. Otherwise, you will have the
following issue when running decode.py:

_pickle.UnpicklingError: invalid load key, 'v'

To fix that issue, please use:

cd icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09
git lfs pull

Caution: In order to use this pre-trained model, your k2 version has to be v1.9 or later.

After downloading, you will have the following files:

$ cd egs/librispeech/ASR
$ tree icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09

icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09
|-- README.md
|-- data
| |-- lang_bpe_500
| | |-- HLG.pt
| | |-- HLG_modified.pt
| | |-- bpe.model
| | |-- tokens.txt
| | `-- words.txt
| `-- lm
| `-- G_4_gram.pt
|-- exp
| |-- cpu_jit.pt
| `-- pretrained.pt
|-- log
| `-- log-decode-2021-11-09-17-38-28
`-- test_wavs

(continues on next page)

142 Chapter 6. Recipes

https://github.com/csukuangfj/kaldifeat
https://github.com/csukuangfj/kaldifeat


icefall, Release 0.1

(continued from previous page)

|-- 1089-134686-0001.wav
|-- 1221-135766-0001.wav
|-- 1221-135766-0002.wav
`-- trans.txt

File descriptions:
• data/lang_bpe_500/HLG.pt

It is the decoding graph.

• data/lang_bpe_500/HLG_modified.pt

It uses a modified CTC topology while building HLG.

• data/lang_bpe_500/bpe.model

It is a sentencepiece model. You can use it to reproduce our results.

• data/lang_bpe_500/tokens.txt

It contains tokens and their IDs, generated from bpe.model. Provided only for convenience so
that you can look up the SOS/EOS ID easily.

• data/lang_bpe_500/words.txt

It contains words and their IDs.

• data/lm/G_4_gram.pt

It is a 4-gram LM, used for n-gram LM rescoring.

• exp/pretrained.pt

It contains pre-trained model parameters, obtained by averaging checkpoints from epoch-23.pt
to epoch-77.pt. Note: We have removed optimizer state_dict to reduce file size.

• exp/cpu_jit.pt

It contains torch scripted model that can be deployed in C++.

• test_wavs/*.wav

It contains some test sound files from LibriSpeech test-clean dataset.

• test_wavs/trans.txt

It contains the reference transcripts for the sound files in test_wavs/.

The information of the test sound files is listed below:

$ soxi icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/*.wav

Input File : 'icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/
→˓1089-134686-0001.wav'
Channels : 1
Sample Rate : 16000
Precision : 16-bit
Duration : 00:00:06.62 = 106000 samples ~ 496.875 CDDA sectors
File Size : 212k
Bit Rate : 256k
Sample Encoding: 16-bit Signed Integer PCM

(continues on next page)
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Input File : 'icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/
→˓1221-135766-0001.wav'
Channels : 1
Sample Rate : 16000
Precision : 16-bit
Duration : 00:00:16.71 = 267440 samples ~ 1253.62 CDDA sectors
File Size : 535k
Bit Rate : 256k
Sample Encoding: 16-bit Signed Integer PCM

Input File : 'icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/
→˓1221-135766-0002.wav'
Channels : 1
Sample Rate : 16000
Precision : 16-bit
Duration : 00:00:04.83 = 77200 samples ~ 361.875 CDDA sectors
File Size : 154k
Bit Rate : 256k
Sample Encoding: 16-bit Signed Integer PCM

Total Duration of 3 files: 00:00:28.16

Usage

$ cd egs/librispeech/ASR
$ ./conformer_ctc/pretrained.py --help

displays the help information.

It supports 4 decoding methods:

• CTC decoding

• HLG decoding

• HLG + n-gram LM rescoring

• HLG + n-gram LM rescoring + attention decoder rescoring

CTC decoding

CTC decoding uses the best path of the decoding lattice as the decoding result without any LM or lexicon.

The command to run CTC decoding is:

$ cd egs/librispeech/ASR
$ ./conformer_ctc/pretrained.py \

--checkpoint ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/exp/
→˓pretrained.pt \

--bpe-model ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_
(continues on next page)
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→˓bpe_500/bpe.model \
--method ctc-decoding \
--num-classes 500 \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-

→˓0001.wav \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-

→˓0001.wav \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-

→˓0002.wav

The output is given below:

2021-11-10 12:12:29,554 INFO [pretrained.py:260] {'sample_rate': 16000, 'subsampling_
→˓factor': 4, 'vgg_frontend': False, 'use_feat_batchnorm': True, 'feature_dim': 80,
→˓'nhead': 8, 'attention_dim': 512, 'num_decoder_layers': 0, 'search_beam': 20, 'output_
→˓beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores':␣
→˓True, 'checkpoint': './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/
→˓exp/pretrained.pt', 'words_file': None, 'HLG': None, 'bpe_model': './icefall-asr-
→˓librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/bpe.model', 'method
→˓': 'ctc-decoding', 'G': None, 'num_paths': 100, 'ngram_lm_scale': 1.3, 'attention_
→˓decoder_scale': 1.2, 'nbest_scale': 0.5, 'sos_id': 1, 'num_classes': 500, 'eos_id': 1,
→˓'sound_files': ['./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_
→˓wavs/1089-134686-0001.wav', './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-
→˓11-09/test_wavs/1221-135766-0001.wav', './icefall-asr-librispeech-conformer-ctc-jit-
→˓bpe-500-2021-11-09/test_wavs/1221-135766-0002.wav'], 'env_info': {'k2-version': '1.9',
→˓'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1':
→˓'7178d67e594bc7fa89c2b331ad7bd1c62a6a9eb4', 'k2-git-date': 'Tue Oct 26 22:12:54 2021',
→˓'lhotse-version': '0.11.0.dev+missing.version.file', 'torch-cuda-available': True,
→˓'torch-cuda-version': '10.1', 'python-version': '3.8', 'icefall-git-branch': 'bpe-500',
→˓ 'icefall-git-sha1': '8d93169-dirty', 'icefall-git-date': 'Wed Nov 10 11:52:44 2021',
→˓'icefall-path': '/ceph-fj/fangjun/open-source-2/icefall-fix', 'k2-path': '/ceph-fj/
→˓fangjun/open-source-2/k2-bpe-500/k2/python/k2/__init__.py', 'lhotse-path': '/ceph-fj/
→˓fangjun/open-source-2/lhotse-bpe-500/lhotse/__init__.py'}}
2021-11-10 12:12:29,554 INFO [pretrained.py:266] device: cuda:0
2021-11-10 12:12:29,554 INFO [pretrained.py:268] Creating model
2021-11-10 12:12:35,600 INFO [pretrained.py:285] Constructing Fbank computer
2021-11-10 12:12:35,601 INFO [pretrained.py:295] Reading sound files: ['./icefall-asr-
→˓librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-0001.wav', './
→˓icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-
→˓0001.wav', './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/
→˓1221-135766-0002.wav']
2021-11-10 12:12:35,758 INFO [pretrained.py:301] Decoding started
2021-11-10 12:12:36,025 INFO [pretrained.py:319] Use CTC decoding
2021-11-10 12:12:36,204 INFO [pretrained.py:425]
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-
→˓0001.wav:
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER␣
→˓OF THE BROFFELS

./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-
→˓0001.wav:
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY␣

(continues on next page)
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→˓CHILD WHOSE PLACE WAS ON THAT SAME DISHONORED B
OSOM TO CONNECT HER PARENT FOREVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE␣
→˓FINALLY A BLESSED SOUL IN HEAVEN

./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-
→˓0002.wav:
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION

2021-11-10 12:12:36,204 INFO [pretrained.py:427] Decoding Done

HLG decoding

HLG decoding uses the best path of the decoding lattice as the decoding result.

The command to run HLG decoding is:

$ cd egs/librispeech/ASR
$ ./conformer_ctc/pretrained.py \

--checkpoint ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/exp/
→˓pretrained.pt \

--words-file ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_
→˓bpe_500/words.txt \

--method 1best \
--num-classes 500 \
--HLG ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_

→˓500/HLG.pt \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-

→˓0001.wav \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-

→˓0001.wav \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-

→˓0002.wav

The output is given below:

2021-11-10 13:33:03,723 INFO [pretrained.py:260] {'sample_rate': 16000, 'subsampling_
→˓factor': 4, 'vgg_frontend': False, 'use_feat_batchnorm': True, 'feature_dim': 80,
→˓'nhead': 8, 'attention_dim': 512, 'num_decoder_layers': 0, 'search_beam': 20, 'output_
→˓beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores':␣
→˓True, 'checkpoint': './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/
→˓exp/pretrained.pt', 'words_file': './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-
→˓2021-11-09/data/lang_bpe_500/words.txt', 'HLG': './icefall-asr-librispeech-conformer-
→˓ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/HLG.pt', 'bpe_model': None, 'method':
→˓'1best', 'G': None, 'num_paths': 100, 'ngram_lm_scale': 1.3, 'attention_decoder_scale
→˓': 1.2, 'nbest_scale': 0.5, 'sos_id': 1, 'num_classes': 500, 'eos_id': 1, 'sound_files
→˓': ['./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-
→˓134686-0001.wav', './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_
→˓wavs/1221-135766-0001.wav', './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-
→˓11-09/test_wavs/1221-135766-0002.wav'], 'env_info': {'k2-version': '1.9', 'k2-build-
→˓type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1':
→˓'7178d67e594bc7fa89c2b331ad7bd1c62a6a9eb4', 'k2-git-date': 'Tue Oct 26 22:12:54 2021',
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→˓'lhotse-version': '0.11.0.dev+missing.version.file', 'torch-cuda-available': True,
→˓'torch-cuda-version': '10.1', 'python-version': '3.8', 'icefall-git-branch': 'bpe-500',
→˓ 'icefall-git-sha1': '8d93169-dirty', 'icefall-git-date': 'Wed Nov 10 11:52:44 2021',
→˓'icefall-path': '/ceph-fj/fangjun/open-source-2/icefall-fix', 'k2-path': '/ceph-fj/
→˓fangjun/open-source-2/k2-bpe-500/k2/python/k2/__init__.py', 'lhotse-path': '/ceph-fj/
→˓fangjun/open-source-2/lhotse-bpe-500/lhotse/__init__.py'}}
2021-11-10 13:33:03,723 INFO [pretrained.py:266] device: cuda:0
2021-11-10 13:33:03,723 INFO [pretrained.py:268] Creating model
2021-11-10 13:33:09,775 INFO [pretrained.py:285] Constructing Fbank computer
2021-11-10 13:33:09,776 INFO [pretrained.py:295] Reading sound files: ['./icefall-asr-
→˓librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-0001.wav', './
→˓icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-
→˓0001.wav', './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/
→˓1221-135766-0002.wav']
2021-11-10 13:33:09,881 INFO [pretrained.py:301] Decoding started
2021-11-10 13:33:09,951 INFO [pretrained.py:352] Loading HLG from ./icefall-asr-
→˓librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/HLG.pt
2021-11-10 13:33:13,234 INFO [pretrained.py:384] Use HLG decoding
2021-11-10 13:33:13,571 INFO [pretrained.py:425]
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-
→˓0001.wav:
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER␣
→˓OF THE BROTHELS

./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-
→˓0001.wav:
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY␣
→˓CHILD WHOSE PLACE WAS ON THAT SAME DISHONORED BOSOM TO CONNECT HER PARENT FOREVER WITH␣
→˓THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN

./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-
→˓0002.wav:
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION

2021-11-10 13:33:13,571 INFO [pretrained.py:427] Decoding Done

HLG decoding + LM rescoring

It uses an n-gram LM to rescore the decoding lattice and the best path of the rescored lattice is the decoding result.

The command to run HLG decoding + LM rescoring is:

$ cd egs/librispeech/ASR
./conformer_ctc/pretrained.py \

--checkpoint ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/exp/
→˓pretrained.pt \

--words-file ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_
→˓bpe_500/words.txt \

--method whole-lattice-rescoring \
--num-classes 500 \
--HLG ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_
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→˓500/HLG.pt \
--G ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lm/G_4_gram.

→˓pt \
--ngram-lm-scale 1.0 \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-

→˓0001.wav \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-

→˓0001.wav \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-

→˓0002.wav

Its output is:

2021-11-10 13:39:55,857 INFO [pretrained.py:260] {'sample_rate': 16000, 'subsampling_
→˓factor': 4, 'vgg_frontend': False, 'use_feat_batchnorm': True, 'feature_dim': 80,
→˓'nhead': 8, 'attention_dim': 512, 'num_decoder_layers': 0, 'search_beam': 20, 'output_
→˓beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores':␣
→˓True, 'checkpoint': './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/
→˓exp/pretrained.pt', 'words_file': './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-
→˓2021-11-09/data/lang_bpe_500/words.txt', 'HLG': './icefall-asr-librispeech-conformer-
→˓ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/HLG.pt', 'bpe_model': None, 'method':
→˓'whole-lattice-rescoring', 'G': './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-
→˓2021-11-09/data/lm/G_4_gram.pt', 'num_paths': 100, 'ngram_lm_scale': 1.0, 'attention_
→˓decoder_scale': 1.2, 'nbest_scale': 0.5, 'sos_id': 1, 'num_classes': 500, 'eos_id': 1,
→˓'sound_files': ['./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_
→˓wavs/1089-134686-0001.wav', './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-
→˓11-09/test_wavs/1221-135766-0001.wav', './icefall-asr-librispeech-conformer-ctc-jit-
→˓bpe-500-2021-11-09/test_wavs/1221-135766-0002.wav'], 'env_info': {'k2-version': '1.9',
→˓'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-$it-sha1':
→˓'7178d67e594bc7fa89c2b331ad7bd1c62a6a9eb4', 'k2-git-date': 'Tue Oct 26 22:12:54 2021',
→˓'lhotse-version': '0.11.0.dev+missing.version.file', 'torch-cuda-available': True,
→˓'torch-cuda-version': '10.1', 'python-version': '3.8', 'icefall-git-branch': 'bpe-500',
→˓ 'icefall-git-sha1': '8d93169-dirty', 'icefall-git-date': 'Wed Nov 10 11:52:44 2021',
→˓'icefall-path': '/ceph-fj/fangjun/open-source-2/icefall-fix', 'k2-path': '/ceph-fj/
→˓fangjun/open-source-2/k2-bpe-500/k2/python/k2/__init__.py', 'lhotse-path': '/ceph-fj/
→˓fangjun/open-source-2/lhotse-bpe-500/lhotse/__init__.py'}}
2021-11-10 13:39:55,858 INFO [pretrained.py:266] device: cuda:0
2021-11-10 13:39:55,858 INFO [pretrained.py:268] Creating model
2021-11-10 13:40:01,979 INFO [pretrained.py:285] Constructing Fbank computer
2021-11-10 13:40:01,980 INFO [pretrained.py:295] Reading sound files: ['./icefall-asr-
→˓librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-0001.wav', './
→˓icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-
→˓0001.wav', './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/
→˓1221-135766-0002.wav']
2021-11-10 13:40:02,055 INFO [pretrained.py:301] Decoding started
2021-11-10 13:40:02,117 INFO [pretrained.py:352] Loading HLG from ./icefall-asr-
→˓librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/HLG.pt
2021-11-10 13:40:05,051 INFO [pretrained.py:363] Loading G from ./icefall-asr-
→˓librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lm/G_4_gram.pt
2021-11-10 13:40:18,959 INFO [pretrained.py:389] Use HLG decoding + LM rescoring
2021-11-10 13:40:19,546 INFO [pretrained.py:425]
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-

(continues on next page)
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→˓0001.wav:
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER␣
→˓OF THE BROTHELS

./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-
→˓0001.wav:
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY␣
→˓CHILD WHOSE PLACE WAS ON THAT SAME DISHONORED BOSOM TO CONNECT HER PARENT FOREVER WITH␣
→˓THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN

./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-
→˓0002.wav:
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION

2021-11-10 13:40:19,546 INFO [pretrained.py:427] Decoding Done

HLG decoding + LM rescoring + attention decoder rescoring

It uses an n-gram LM to rescore the decoding lattice, extracts n paths from the rescored lattice, recores the extracted
paths with an attention decoder. The path with the highest score is the decoding result.

The command to run HLG decoding + LM rescoring + attention decoder rescoring is:

$ cd egs/librispeech/ASR
$ ./conformer_ctc/pretrained.py \

--checkpoint ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/exp/
→˓pretrained.pt \

--words-file ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_
→˓bpe_500/words.txt \

--method attention-decoder \
--num-classes 500 \
--HLG ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_

→˓500/HLG.pt \
--G ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lm/G_4_gram.

→˓pt \
--ngram-lm-scale 2.0 \
--attention-decoder-scale 2.0 \
--nbest-scale 0.5 \
--num-paths 100 \
--sos-id 1 \
--eos-id 1 \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-

→˓0001.wav \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-

→˓0001.wav \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-

→˓0002.wav

The output is below:
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2021-11-10 13:43:45,598 INFO [pretrained.py:260] {'sample_rate': 16000, 'subsampling_
→˓factor': 4, 'vgg_frontend': False, 'use_feat_batchnorm': True, 'feature_dim': 80,
→˓'nhead': 8, 'attention_dim': 512, 'num_decoder_layers': 6, 'search_beam': 20, 'output_
→˓beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores':␣
→˓True, 'checkpoint': './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/
→˓exp/pretrained.pt', 'words_file': './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-
→˓2021-11-09/data/lang_bpe_500/words.txt', 'HLG': './icefall-asr-librispeech-conformer-
→˓ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/HLG.pt', 'bpe_model': None, 'method':
→˓'attention-decoder', 'G': './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-
→˓09/data/lm/G_4_gram.pt', 'num_paths': 100, 'ngram_lm_scale': 2.0, 'attention_decoder_
→˓scale': 2.0, 'nbest_scale': 0.5, 'sos_id': 1, 'num_classes': 500, 'eos_id': 1, 'sound_
→˓files': ['./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/
→˓1089-134686-0001.wav', './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/
→˓test_wavs/1221-135766-0001.wav', './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-
→˓2021-11-09/test_wavs/1221-135766-0002.wav'], 'env_info': {'k2-version': '1.9', 'k2-
→˓build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1':
→˓'7178d67e594bc7fa89c2b331ad7bd1c62a6a9eb4', 'k2-git-date': 'Tue Oct 26 22:12:54 2021',
→˓'lhotse-version': '0.11.0.dev+missing.version.file', 'torch-cuda-available': True,
→˓'torch-cuda-version': '10.1', 'python-version': '3.8', 'icefall-git-branch': 'bpe-500',
→˓ 'icefall-git-sha1': '8d93169-dirty', 'icefall-git-date': 'Wed Nov 10 11:52:44 2021',
→˓'icefall-path': '/ceph-fj/fangjun/open-source-2/icefall-fix', 'k2-path': '/ceph-fj/
→˓fangjun/open-source-2/k2-bpe-500/k2/python/k2/__init__.py', 'lhotse-path': '/ceph-fj/
→˓fangjun/open-source-2/lhotse-bpe-500/lhotse/__init__.py'}}
2021-11-10 13:43:45,599 INFO [pretrained.py:266] device: cuda:0
2021-11-10 13:43:45,599 INFO [pretrained.py:268] Creating model
2021-11-10 13:43:51,833 INFO [pretrained.py:285] Constructing Fbank computer
2021-11-10 13:43:51,834 INFO [pretrained.py:295] Reading sound files: ['./icefall-asr-
→˓librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-0001.wav', './
→˓icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-
→˓0001.wav', './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/
→˓1221-135766-0002.wav']
2021-11-10 13:43:51,915 INFO [pretrained.py:301] Decoding started
2021-11-10 13:43:52,076 INFO [pretrained.py:352] Loading HLG from ./icefall-asr-
→˓librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/HLG.pt
2021-11-10 13:43:55,110 INFO [pretrained.py:363] Loading G from ./icefall-asr-
→˓librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lm/G_4_gram.pt
2021-11-10 13:44:09,329 INFO [pretrained.py:397] Use HLG + LM rescoring + attention␣
→˓decoder rescoring
2021-11-10 13:44:10,192 INFO [pretrained.py:425]
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-
→˓0001.wav:
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER␣
→˓OF THE BROTHELS

./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-
→˓0001.wav:
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY␣
→˓CHILD WHOSE PLACE WAS ON THAT SAME DISHONORED BOSOM TO CONNECT HER PARENT FOREVER WITH␣
→˓THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN

./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-
→˓0002.wav:
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION

(continues on next page)
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2021-11-10 13:44:10,192 INFO [pretrained.py:427] Decoding Done

Compute WER with the pre-trained model

To check the WER of the pre-trained model on the test datasets, run:

$ cd egs/librispeech/ASR
$ cd icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/exp/
$ ln -s pretrained.pt epoch-999.pt
$ cd ../..
$ ./conformer_ctc/decode.py \

--exp-dir ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/exp \
--lang-dir ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_

→˓bpe_500 \
--lm-dir ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lm \
--epoch 999 \
--avg 1 \
--concatenate-cuts 0 \
--bucketing-sampler 1 \
--max-duration 30 \
--num-paths 1000 \
--method attention-decoder \
--nbest-scale 0.5

Colab notebook

We do provide a colab notebook for this recipe showing how to use a pre-trained model.

Hint: Due to limited memory provided by Colab, you have to upgrade to Colab Pro to run HLG decoding + LM
rescoring and HLG decoding + LM rescoring + attention decoder rescoring. Otherwise, you can only
run HLG decoding with Colab.

Congratulations! You have finished the LibriSpeech ASR recipe with conformer CTC models in icefall.

If you want to deploy your trained model in C++, please read the following section.

Deployment with C++

This section describes how to deploy the pre-trained model in C++, without Python dependencies.

Hint: At present, it does NOT support streaming decoding.

First, let us compile k2 from source:
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$ cd $HOME
$ git clone https://github.com/k2-fsa/k2
$ cd k2
$ git checkout v2.0-pre

Caution: You have to switch to the branch v2.0-pre!

$ mkdir build-release
$ cd build-release
$ cmake -DCMAKE_BUILD_TYPE=Release ..
$ make -j ctc_decode hlg_decode ngram_lm_rescore attention_rescore

# You will find four binaries in `./bin`, i.e.,
# ./bin/ctc_decode, ./bin/hlg_decode,
# ./bin/ngram_lm_rescore, and ./bin/attention_rescore

Now you are ready to go!

Assume you have run:

$ cd k2/build-release
$ ln -s /path/to/icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09 .
→˓/

To view the usage of ./bin/ctc_decode, run:

$ ./bin/ctc_decode

It will show you the following message:

Please provide --nn_model

This file implements decoding with a CTC topology, without any
kinds of LM or lexicons.

Usage:
./bin/ctc_decode \
--use_gpu true \
--nn_model <path to torch scripted pt file> \
--bpe_model <path to pre-trained BPE model> \
<path to foo.wav> \
<path to bar.wav> \
<more waves if any>

To see all possible options, use
./bin/ctc_decode --help

Caution:
- Only sound files (*.wav) with single channel are supported.
- It assumes the model is conformer_ctc/transformer.py from icefall.
If you use a different model, you have to change the code
related to `model.forward` in this file.
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CTC decoding

./bin/ctc_decode \
--use_gpu true \
--nn_model ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/exp/cpu_jit.

→˓pt \
--bpe_model ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_

→˓bpe_500/bpe.model \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-

→˓0001.wav \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-

→˓0001.wav \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-

→˓0002.wav

Its output is:

2021-11-10 13:57:55.316 [I] k2/torch/bin/ctc_decode.cu:105:int main(int, char**) Use GPU
2021-11-10 13:57:55.316 [I] k2/torch/bin/ctc_decode.cu:109:int main(int, char**) Device:␣
→˓cuda:0
2021-11-10 13:57:55.316 [I] k2/torch/bin/ctc_decode.cu:118:int main(int, char**) Load␣
→˓wave files
2021-11-10 13:58:01.221 [I] k2/torch/bin/ctc_decode.cu:125:int main(int, char**) Build␣
→˓Fbank computer
2021-11-10 13:58:01.222 [I] k2/torch/bin/ctc_decode.cu:136:int main(int, char**) Compute␣
→˓features
2021-11-10 13:58:01.228 [I] k2/torch/bin/ctc_decode.cu:144:int main(int, char**) Load␣
→˓neural network model
2021-11-10 13:58:02.19 [I] k2/torch/bin/ctc_decode.cu:159:int main(int, char**) Compute␣
→˓nnet_output
2021-11-10 13:58:02.543 [I] k2/torch/bin/ctc_decode.cu:174:int main(int, char**) Build␣
→˓CTC topo
2021-11-10 13:58:02.547 [I] k2/torch/bin/ctc_decode.cu:177:int main(int, char**) Decoding
2021-11-10 13:58:02.708 [I] k2/torch/bin/ctc_decode.cu:207:int main(int, char**)
Decoding result:

./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-
→˓0001.wav
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER␣
→˓OF THE BROFFELS

./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-
→˓0001.wav
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY␣
→˓CHILD WHOSE PLACE WAS ON THAT SAME DISHONORED BOSOM TO CONNECT HER PARENT FOREVER WITH␣
→˓THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN

./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-
→˓0002.wav
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
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HLG decoding

./bin/hlg_decode \
--use_gpu true \
--nn_model ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/exp/cpu_jit.

→˓pt \
--hlg ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/

→˓HLG.pt \
--word_table ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_

→˓bpe_500/words.txt \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-

→˓0001.wav \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-

→˓0001.wav \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-

→˓0002.wav

The output is:

2021-11-10 13:59:04.729 [I] k2/torch/bin/hlg_decode.cu:111:int main(int, char**) Use GPU
2021-11-10 13:59:04.729 [I] k2/torch/bin/hlg_decode.cu:115:int main(int, char**) Device:␣
→˓cuda:0
2021-11-10 13:59:04.729 [I] k2/torch/bin/hlg_decode.cu:124:int main(int, char**) Load␣
→˓wave files
2021-11-10 13:59:10.702 [I] k2/torch/bin/hlg_decode.cu:131:int main(int, char**) Build␣
→˓Fbank computer
2021-11-10 13:59:10.703 [I] k2/torch/bin/hlg_decode.cu:142:int main(int, char**) Compute␣
→˓features
2021-11-10 13:59:10.707 [I] k2/torch/bin/hlg_decode.cu:150:int main(int, char**) Load␣
→˓neural network model
2021-11-10 13:59:11.545 [I] k2/torch/bin/hlg_decode.cu:165:int main(int, char**) Compute␣
→˓nnet_output
2021-11-10 13:59:12.72 [I] k2/torch/bin/hlg_decode.cu:180:int main(int, char**) Load ./
→˓icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/HLG.pt
2021-11-10 13:59:12.994 [I] k2/torch/bin/hlg_decode.cu:185:int main(int, char**) Decoding
2021-11-10 13:59:13.268 [I] k2/torch/bin/hlg_decode.cu:216:int main(int, char**)
Decoding result:

./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-
→˓0001.wav
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER␣
→˓OF THE BROTHELS

./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-
→˓0001.wav
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY␣
→˓CHILD WHOSE PLACE WAS ON THAT SAME DISHONORED BOSOM TO CONNECT HER PARENT FOREVER WITH␣
→˓THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN

./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-
→˓0002.wav
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
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HLG decoding + n-gram LM rescoring

./bin/ngram_lm_rescore \
--use_gpu true \
--nn_model ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/exp/cpu_jit.

→˓pt \
--hlg ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/

→˓HLG.pt \
--g ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lm/G_4_gram.pt␣

→˓\
--ngram_lm_scale 1.0 \
--word_table ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_

→˓bpe_500/words.txt \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-

→˓0001.wav \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-

→˓0001.wav \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-

→˓0002.wav

The output is:

2021-11-10 14:00:55.279 [I] k2/torch/bin/ngram_lm_rescore.cu:122:int main(int, char**)␣
→˓Use GPU
2021-11-10 14:00:55.280 [I] k2/torch/bin/ngram_lm_rescore.cu:126:int main(int, char**)␣
→˓Device: cuda:0
2021-11-10 14:00:55.280 [I] k2/torch/bin/ngram_lm_rescore.cu:135:int main(int, char**)␣
→˓Load wave files
2021-11-10 14:01:01.214 [I] k2/torch/bin/ngram_lm_rescore.cu:142:int main(int, char**)␣
→˓Build Fbank computer
2021-11-10 14:01:01.215 [I] k2/torch/bin/ngram_lm_rescore.cu:153:int main(int, char**)␣
→˓Compute features
2021-11-10 14:01:01.219 [I] k2/torch/bin/ngram_lm_rescore.cu:161:int main(int, char**)␣
→˓Load neural network model
2021-11-10 14:01:01.945 [I] k2/torch/bin/ngram_lm_rescore.cu:176:int main(int, char**)␣
→˓Compute nnet_output
2021-11-10 14:01:02.475 [I] k2/torch/bin/ngram_lm_rescore.cu:191:int main(int, char**)␣
→˓Load ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/
→˓HLG.pt
2021-11-10 14:01:03.398 [I] k2/torch/bin/ngram_lm_rescore.cu:199:int main(int, char**)␣
→˓Decoding
2021-11-10 14:01:03.515 [I] k2/torch/bin/ngram_lm_rescore.cu:205:int main(int, char**)␣
→˓Load n-gram LM: ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lm/
→˓G_4_gram.pt
2021-11-10 14:01:07.432 [W] k2/torch/csrc/deserialization.cu:441:k2::FsaClass␣
→˓k2::LoadFsa(const string&, c10::optional<c10::Device>)
Ignore non tensor attribute: 'dummy' of type: Int
2021-11-10 14:01:07.589 [I] k2/torch/bin/ngram_lm_rescore.cu:214:int main(int, char**)␣
→˓Rescore with an n-gram LM
2021-11-10 14:01:08.68 [I] k2/torch/bin/ngram_lm_rescore.cu:242:int main(int, char**)
Decoding result:

./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-
(continues on next page)
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→˓0001.wav
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER␣
→˓OF THE BROTHELS

./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-
→˓0001.wav
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY␣
→˓CHILD WHOSE PLACE WAS ON THAT SAME DISHONORED BOSOM TO CONNECT HER PARENT FOREVER WITH␣
→˓THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN

./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-
→˓0002.wav
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION

HLG decoding + n-gram LM rescoring + attention decoder rescoring

./bin/attention_rescore \
--use_gpu true \
--nn_model ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/exp/cpu_jit.

→˓pt \
--hlg ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/

→˓HLG.pt \
--g ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lm/G_4_gram.pt␣

→˓\
--ngram_lm_scale 2.0 \
--attention_scale 2.0 \
--num_paths 100 \
--nbest_scale 0.5 \
--word_table ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_

→˓bpe_500/words.txt \
--sos_id 1 \
--eos_id 1 \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-

→˓0001.wav \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-

→˓0001.wav \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-

→˓0002.wav

The output is:

2021-11-10 14:02:43.656 [I] k2/torch/bin/attention_rescore.cu:149:int main(int, char**)␣
→˓Use GPU
2021-11-10 14:02:43.656 [I] k2/torch/bin/attention_rescore.cu:153:int main(int, char**)␣
→˓Device: cuda:0
2021-11-10 14:02:43.656 [I] k2/torch/bin/attention_rescore.cu:162:int main(int, char**)␣
→˓Load wave files
2021-11-10 14:02:49.216 [I] k2/torch/bin/attention_rescore.cu:169:int main(int, char**)␣
→˓Build Fbank computer
2021-11-10 14:02:49.217 [I] k2/torch/bin/attention_rescore.cu:180:int main(int, char**)␣

(continues on next page)
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→˓Compute features
2021-11-10 14:02:49.222 [I] k2/torch/bin/attention_rescore.cu:188:int main(int, char**)␣
→˓Load neural network model
2021-11-10 14:02:49.984 [I] k2/torch/bin/attention_rescore.cu:203:int main(int, char**)␣
→˓Compute nnet_output
2021-11-10 14:02:50.624 [I] k2/torch/bin/attention_rescore.cu:220:int main(int, char**)␣
→˓Load ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/
→˓HLG.pt
2021-11-10 14:02:51.519 [I] k2/torch/bin/attention_rescore.cu:228:int main(int, char**)␣
→˓Decoding
2021-11-10 14:02:51.632 [I] k2/torch/bin/attention_rescore.cu:234:int main(int, char**)␣
→˓Load n-gram LM: ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lm/
→˓G_4_gram.pt
2021-11-10 14:02:55.537 [W] k2/torch/csrc/deserialization.cu:441:k2::FsaClass␣
→˓k2::LoadFsa(const string&, c10::optional<c10::Device>) Ignore non tensor attribute:
→˓'dummy' of type: Int
2021-11-10 14:02:55.645 [I] k2/torch/bin/attention_rescore.cu:243:int main(int, char**)␣
→˓Rescore with an n-gram LM
2021-11-10 14:02:55.970 [I] k2/torch/bin/attention_rescore.cu:246:int main(int, char**)␣
→˓Sample 100 paths
2021-11-10 14:02:56.215 [I] k2/torch/bin/attention_rescore.cu:293:int main(int, char**)␣
→˓Run attention decoder
2021-11-10 14:02:57.35 [I] k2/torch/bin/attention_rescore.cu:303:int main(int, char**)␣
→˓Rescoring
2021-11-10 14:02:57.179 [I] k2/torch/bin/attention_rescore.cu:369:int main(int, char**)
Decoding result:

./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-
→˓0001.wav
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER␣
→˓OF THE BROTHELS

./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-
→˓0001.wav
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY␣
→˓CHILD WHOSE PLACE WAS ON THAT SAME DISHONORED BOSOM TO CONNECT HER PARENT FOREVER WITH␣
→˓THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN

./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-
→˓0002.wav
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION

There is a Colab notebook showing you how to run a torch scripted model in C++. Please see
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Pruned transducer statelessX

This tutorial shows you how to run a conformer transducer model with the LibriSpeech dataset.

Note: The tutorial is suitable for pruned_transducer_stateless, pruned_transducer_stateless2,
pruned_transducer_stateless4, pruned_transducer_stateless5, We will take pruned_transducer_stateless4 as an
example in this tutorial.

Hint: We assume you have read the page Installation and have setup the environment for icefall.

Hint: We recommend you to use a GPU or several GPUs to run this recipe.

Hint: Please scroll down to the bottom of this page to find download links for pretrained models if you don’t want to
train a model from scratch.

We use pruned RNN-T to compute the loss.

Note: You can find the paper about pruned RNN-T at the following address:

https://arxiv.org/abs/2206.13236

The transducer model consists of 3 parts:

• Encoder, a.k.a, the transcription network. We use a Conformer model (the reworked version by Daniel Povey)

• Decoder, a.k.a, the prediction network. We use a stateless model consisting of nn.Embedding and nn.Conv1d

• Joiner, a.k.a, the joint network.

Caution: Contrary to the conventional RNN-T models, we use a stateless decoder. That is, it has no recurrent
connections.

Data preparation

Hint: The data preparation is the same as other recipes on LibriSpeech dataset, if you have finished this step, you can
skip to Training directly.

$ cd egs/librispeech/ASR
$ ./prepare.sh

The script ./prepare.sh handles the data preparation for you, automagically. All you need to do is to run it.

The data preparation contains several stages, you can use the following two options:

• --stage

• --stop-stage
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to control which stage(s) should be run. By default, all stages are executed.

For example,

$ cd egs/librispeech/ASR
$ ./prepare.sh --stage 0 --stop-stage 0

means to run only stage 0.

To run stage 2 to stage 5, use:

$ ./prepare.sh --stage 2 --stop-stage 5

Hint: If you have pre-downloaded the LibriSpeech dataset and the musan dataset, say, they are saved in /tmp/
LibriSpeech and /tmp/musan, you can modify the dl_dir variable in ./prepare.sh to point to /tmp so that
./prepare.sh won’t re-download them.

Note: All generated files by ./prepare.sh, e.g., features, lexicon, etc, are saved in ./data directory.

We provide the following YouTube video showing how to run ./prepare.sh.

Note: To get the latest news of next-gen Kaldi, please subscribe the following YouTube channel by Nadira Povey:

https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw

https://youtu.be/ofEIoJL-mGM

Training

Configurable options

$ cd egs/librispeech/ASR
$ ./pruned_transducer_stateless4/train.py --help

shows you the training options that can be passed from the commandline. The following options are used quite often:

• --exp-dir

The directory to save checkpoints, training logs and tensorboard.

• --full-libri

If it’s True, the training part uses all the training data, i.e., 960 hours. Otherwise, the training part uses only the
subset train-clean-100, which has 100 hours of training data.

Caution: The training set is perturbed by speed with two factors: 0.9 and 1.1. If --full-libri is True,
each epoch actually processes 3x960 == 2880 hours of data.

• --num-epochs
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It is the number of epochs to train. For instance, ./pruned_transducer_stateless4/train.py
--num-epochs 30 trains for 30 epochs and generates epoch-1.pt, epoch-2.pt, . . . , epoch-30.pt in the
folder ./pruned_transducer_stateless4/exp.

• --start-epoch

It’s used to resume training. ./pruned_transducer_stateless4/train.py --start-epoch 10 loads the
checkpoint ./pruned_transducer_stateless4/exp/epoch-9.pt and starts training from epoch 10, based
on the state from epoch 9.

• --world-size

It is used for multi-GPU single-machine DDP training.

– (a) If it is 1, then no DDP training is used.

– (b) If it is 2, then GPU 0 and GPU 1 are used for DDP training.

The following shows some use cases with it.

Use case 1: You have 4 GPUs, but you only want to use GPU 0 and GPU 2 for training. You can do
the following:

$ cd egs/librispeech/ASR
$ export CUDA_VISIBLE_DEVICES="0,2"
$ ./pruned_transducer_stateless4/train.py --world-size 2

Use case 2: You have 4 GPUs and you want to use all of them for training. You can do the following:

$ cd egs/librispeech/ASR
$ ./pruned_transducer_stateless4/train.py --world-size 4

Use case 3: You have 4 GPUs but you only want to use GPU 3 for training. You can do the following:

$ cd egs/librispeech/ASR
$ export CUDA_VISIBLE_DEVICES="3"
$ ./pruned_transducer_stateless4/train.py --world-size 1

Caution: Only multi-GPU single-machine DDP training is implemented at present. Multi-GPU multi-
machine DDP training will be added later.

• --max-duration

It specifies the number of seconds over all utterances in a batch, before padding. If you encounter CUDA OOM,
please reduce it.

Hint: Due to padding, the number of seconds of all utterances in a batch will usually be larger than
--max-duration.

A larger value for --max-duration may cause OOM during training, while a smaller value may increase the
training time. You have to tune it.

• --use-fp16

If it is True, the model will train with half precision, from our experiment results, by using half precision you
can train with two times larger --max-duration so as to get almost 2X speed up.
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Pre-configured options

There are some training options, e.g., number of encoder layers, encoder dimension, decoder dimension, number of
warmup steps etc, that are not passed from the commandline. They are pre-configured by the function get_params()
in pruned_transducer_stateless4/train.py

You don’t need to change these pre-configured parameters. If you really need to change them, please modify ./
pruned_transducer_stateless4/train.py directly.

Note: The options for pruned_transducer_stateless5 are a little different from other recipes. It allows you to config-
ure --num-encoder-layers, --dim-feedforward, --nhead, --encoder-dim, --decoder-dim, --joiner-dim
from commandline, so that you can train models with different size with pruned_transducer_stateless5.

Training logs

Training logs and checkpoints are saved in --exp-dir (e.g. pruned_transducer_stateless4/exp. You will find
the following files in that directory:

• epoch-1.pt, epoch-2.pt, . . .

These are checkpoint files saved at the end of each epoch, containing model state_dict and opti-
mizer state_dict. To resume training from some checkpoint, say epoch-10.pt, you can use:

$ ./pruned_transducer_stateless4/train.py --start-epoch 11

• checkpoint-436000.pt, checkpoint-438000.pt, . . .

These are checkpoint files saved every --save-every-n batches, containing model state_dict
and optimizer state_dict. To resume training from some checkpoint, say checkpoint-436000,
you can use:

$ ./pruned_transducer_stateless4/train.py --start-batch 436000

• tensorboard/

This folder contains tensorBoard logs. Training loss, validation loss, learning rate, etc, are recorded
in these logs. You can visualize them by:

$ cd pruned_transducer_stateless4/exp/tensorboard
$ tensorboard dev upload --logdir . --description "pruned␣
→˓transducer training for LibriSpeech with icefall"

It will print something like below:

TensorFlow installation not found - running with reduced feature␣
→˓set.
Upload started and will continue reading any new data as it's added␣
→˓to the logdir.

To stop uploading, press Ctrl-C.

New experiment created. View your TensorBoard at: https://
→˓tensorboard.dev/experiment/QOGSPBgsR8KzcRMmie9JGw/

(continues on next page)
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[2022-11-20T15:50:50] Started scanning logdir.
Uploading 4468 scalars...
[2022-11-20T15:53:02] Total uploaded: 210171 scalars, 0 tensors, 0␣
→˓binary objects
Listening for new data in logdir...

Note there is a URL in the above output. Click it and you will see the following screenshot:

Fig. 6.5: TensorBoard screenshot.

Hint: If you don’t have access to google, you can use the following command to view the tensorboard log
locally:

cd pruned_transducer_stateless4/exp/tensorboard
tensorboard --logdir . --port 6008

It will print the following message:

Serving TensorBoard on localhost; to expose to the network, use a␣
→˓proxy or pass --bind_all
TensorBoard 2.8.0 at http://localhost:6008/ (Press CTRL+C to quit)

Now start your browser and go to http://localhost:6008 to view the tensorboard logs.

• log/log-train-xxxx

It is the detailed training log in text format, same as the one you saw printed to the console during
training.
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Usage example

You can use the following command to start the training using 6 GPUs:

export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5"
./pruned_transducer_stateless4/train.py \

--world-size 6 \
--num-epochs 30 \
--start-epoch 1 \
--exp-dir pruned_transducer_stateless4/exp \
--full-libri 1 \
--max-duration 300

Decoding

The decoding part uses checkpoints saved by the training part, so you have to run the training part first.

Hint: There are two kinds of checkpoints:

• (1) epoch-1.pt, epoch-2.pt, . . . , which are saved at the end of each epoch. You can pass --epoch
to pruned_transducer_stateless4/decode.py to use them.

• (2) checkpoints-436000.pt, epoch-438000.pt, . . . , which are saved every --save-every-n
batches. You can pass --iter to pruned_transducer_stateless4/decode.py to use them.

We suggest that you try both types of checkpoints and choose the one that produces the lowest WERs.

$ cd egs/librispeech/ASR
$ ./pruned_transducer_stateless4/decode.py --help

shows the options for decoding.

The following shows two examples (for two types of checkpoints):

for m in greedy_search fast_beam_search modified_beam_search; do
for epoch in 25 20; do
for avg in 7 5 3 1; do

./pruned_transducer_stateless4/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir pruned_transducer_stateless4/exp \
--max-duration 600 \
--decoding-method $m

done
done

done

for m in greedy_search fast_beam_search modified_beam_search; do
for iter in 474000; do
for avg in 8 10 12 14 16 18; do

./pruned_transducer_stateless4/decode.py \
--iter $iter \

(continues on next page)
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--avg $avg \
--exp-dir pruned_transducer_stateless4/exp \
--max-duration 600 \
--decoding-method $m

done
done

done

Note: Supporting decoding methods are as follows:

• greedy_search : It takes the symbol with largest posterior probability of each frame as the decoding result.

• beam_search : It implements Algorithm 1 in https://arxiv.org/pdf/1211.3711.pdf and esp-
net/nets/beam_search_transducer.py is used as a reference. Basicly, it keeps topk states for each frame,
and expands the kept states with their own contexts to next frame.

• modified_beam_search : It implements the same algorithm as beam_search above, but it runs in batch mode
with --max-sym-per-frame=1 being hardcoded.

• fast_beam_search : It implements graph composition between the output log_probs and given FSAs. It is
hard to describe the details in several lines of texts, you can read our paper in https://arxiv.org/pdf/2211.00484.pdf
or our rnnt decode code in k2. fast_beam_search can decode with FSAs on GPU efficiently.

• fast_beam_search_LG : The same as fast_beam_search above, fast_beam_search uses an trivial graph
that has only one state, while fast_beam_search_LG uses an LG graph (with N-gram LM).

• fast_beam_search_nbest : It produces the decoding results as follows:

– (1) Use fast_beam_search to get a lattice

– (2) Select num_paths paths from the lattice using k2.random_paths()

– (3) Unique the selected paths

– (4) Intersect the selected paths with the lattice and compute the shortest path from the intersection result

– (5) The path with the largest score is used as the decoding output.

• fast_beam_search_nbest_LG : It implements same logic as fast_beam_search_nbest, the only difference
is that it uses fast_beam_search_LG to generate the lattice.

Export Model

pruned_transducer_stateless4/export.py supports exporting checkpoints from pruned_transducer_stateless4/
exp in the following ways.
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Export model.state_dict()

Checkpoints saved by pruned_transducer_stateless4/train.py also include optimizer.state_dict(). It
is useful for resuming training. But after training, we are interested only in model.state_dict(). You can use the
following command to extract model.state_dict().

# Assume that --epoch 25 --avg 3 produces the smallest WER
# (You can get such information after running ./pruned_transducer_stateless4/decode.py)

epoch=25
avg=3

./pruned_transducer_stateless4/export.py \
--exp-dir ./pruned_transducer_stateless4/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--epoch $epoch \
--avg $avg

It will generate a file ./pruned_transducer_stateless4/exp/pretrained.pt.

Hint: To use the generated pretrained.pt for pruned_transducer_stateless4/decode.py, you can run:

cd pruned_transducer_stateless4/exp
ln -s pretrained.pt epoch-999.pt

And then pass --epoch 999 --avg 1 --use-averaged-model 0 to ./pruned_transducer_stateless4/
decode.py.

To use the exported model with ./pruned_transducer_stateless4/pretrained.py, you can run:

./pruned_transducer_stateless4/pretrained.py \
--checkpoint ./pruned_transducer_stateless4/exp/pretrained.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
--method greedy_search \
/path/to/foo.wav \
/path/to/bar.wav

Export model using torch.jit.script()

./pruned_transducer_stateless4/export.py \
--exp-dir ./pruned_transducer_stateless4/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--epoch 25 \
--avg 3 \
--jit 1

It will generate a file cpu_jit.pt in the given exp_dir. You can later load it by torch.jit.load("cpu_jit.pt").

Note cpu in the name cpu_jit.pt means the parameters when loaded into Python are on CPU. You can use
to("cuda") to move them to a CUDA device.
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Note: You will need this cpu_jit.pt when deploying with Sherpa framework.

Download pretrained models

If you don’t want to train from scratch, you can download the pretrained models by visiting the following links:

• pruned_transducer_stateless

• pruned_transducer_stateless2

• pruned_transducer_stateless4

• pruned_transducer_stateless5

See https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/RESULTS.md for the details of
the above pretrained models

Deploy with Sherpa

Please see https://k2-fsa.github.io/sherpa/python/offline_asr/conformer/librispeech.html# for how to deploy the mod-
els in sherpa.

Zipformer MMI

Hint: Please scroll down to the bottom of this page to find download links for pretrained models if you don’t want to
train a model from scratch.

This tutorial shows you how to train an Zipformer MMI model with the LibriSpeech dataset.

We use LF-MMI to compute the loss.

Note: You can find the document about LF-MMI training at the following address:

https://github.com/k2-fsa/next-gen-kaldi-wechat/blob/master/pdf/LF-MMI-training-and-decoding-in-k2-Part-I.pdf

Data preparation

$ cd egs/librispeech/ASR
$ ./prepare.sh

The script ./prepare.sh handles the data preparation for you, automagically. All you need to do is to run it.

Note: We encourage you to read ./prepare.sh.

The data preparation contains several stages. You can use the following two options:

• --stage
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• --stop-stage

to control which stage(s) should be run. By default, all stages are executed.

For example,

$ cd egs/librispeech/ASR
$ ./prepare.sh --stage 0 --stop-stage 0

means to run only stage 0.

To run stage 2 to stage 5, use:

$ ./prepare.sh --stage 2 --stop-stage 5

Hint: If you have pre-downloaded the LibriSpeech dataset and the musan dataset, say, they are saved in /tmp/
LibriSpeech and /tmp/musan, you can modify the dl_dir variable in ./prepare.sh to point to /tmp so that
./prepare.sh won’t re-download them.

Note: All generated files by ./prepare.sh, e.g., features, lexicon, etc, are saved in ./data directory.

We provide the following YouTube video showing how to run ./prepare.sh.

Note: To get the latest news of next-gen Kaldi, please subscribe the following YouTube channel by Nadira Povey:

https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw

https://youtu.be/ofEIoJL-mGM

Training

For stability, it uses CTC loss for model warm-up and then switches to MMI loss.

Configurable options

$ cd egs/librispeech/ASR
$ ./zipformer_mmi/train.py --help

shows you the training options that can be passed from the commandline. The following options are used quite often:

• --full-libri

If it’s True, the training part uses all the training data, i.e., 960 hours. Otherwise, the training part uses only the
subset train-clean-100, which has 100 hours of training data.

Caution: The training set is perturbed by speed with two factors: 0.9 and 1.1. If --full-libri is True,
each epoch actually processes 3x960 == 2880 hours of data.
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• --num-epochs

It is the number of epochs to train. For instance, ./zipformer_mmi/train.py --num-epochs 30 trains for
30 epochs and generates epoch-1.pt, epoch-2.pt, . . . , epoch-30.pt in the folder ./zipformer_mmi/exp.

• --start-epoch

It’s used to resume training. ./zipformer_mmi/train.py --start-epoch 10 loads the checkpoint ./
zipformer_mmi/exp/epoch-9.pt and starts training from epoch 10, based on the state from epoch 9.

• --world-size

It is used for multi-GPU single-machine DDP training.

– (a) If it is 1, then no DDP training is used.

– (b) If it is 2, then GPU 0 and GPU 1 are used for DDP training.

The following shows some use cases with it.

Use case 1: You have 4 GPUs, but you only want to use GPU 0 and GPU 2 for training. You can do
the following:

$ cd egs/librispeech/ASR
$ export CUDA_VISIBLE_DEVICES="0,2"
$ ./zipformer_mmi/train.py --world-size 2

Use case 2: You have 4 GPUs and you want to use all of them for training. You can do the following:

$ cd egs/librispeech/ASR
$ ./zipformer_mmi/train.py --world-size 4

Use case 3: You have 4 GPUs but you only want to use GPU 3 for training. You can do the following:

$ cd egs/librispeech/ASR
$ export CUDA_VISIBLE_DEVICES="3"
$ ./zipformer_mmi/train.py --world-size 1

Caution: Only multi-GPU single-machine DDP training is implemented at present. Multi-GPU multi-
machine DDP training will be added later.

• --max-duration

It specifies the number of seconds over all utterances in a batch, before padding. If you encounter CUDA OOM,
please reduce it.

Hint: Due to padding, the number of seconds of all utterances in a batch will usually be larger than
--max-duration.

A larger value for --max-duration may cause OOM during training, while a smaller value may increase the
training time. You have to tune it.
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Pre-configured options

There are some training options, e.g., weight decay, number of warmup steps, results dir, etc, that are not passed from
the commandline. They are pre-configured by the function get_params() in zipformer_mmi/train.py

You don’t need to change these pre-configured parameters. If you really need to change them, please modify ./
zipformer_mmi/train.py directly.

Training logs

Training logs and checkpoints are saved in zipformer_mmi/exp. You will find the following files in that directory:

• epoch-1.pt, epoch-2.pt, . . .

These are checkpoint files saved at the end of each epoch, containing model state_dict and opti-
mizer state_dict. To resume training from some checkpoint, say epoch-10.pt, you can use:

$ ./zipformer_mmi/train.py --start-epoch 11

• checkpoint-436000.pt, checkpoint-438000.pt, . . .

These are checkpoint files saved every --save-every-n batches, containing model state_dict
and optimizer state_dict. To resume training from some checkpoint, say checkpoint-436000,
you can use:

$ ./zipformer_mmi/train.py --start-batch 436000

• tensorboard/

This folder contains tensorBoard logs. Training loss, validation loss, learning rate, etc, are recorded
in these logs. You can visualize them by:

$ cd zipformer_mmi/exp/tensorboard
$ tensorboard dev upload --logdir . --description "Zipformer MMI␣
→˓training for LibriSpeech with icefall"

It will print something like below:

TensorFlow installation not found - running with reduced feature␣
→˓set.
Upload started and will continue reading any new data as it's added␣
→˓to the logdir.

To stop uploading, press Ctrl-C.

New experiment created. View your TensorBoard at: https://
→˓tensorboard.dev/experiment/xyOZUKpEQm62HBIlUD4uPA/

Note there is a URL in the above output. Click it and you will see tensorboard.

Hint: If you don’t have access to google, you can use the following command to view the tensorboard log
locally:

cd zipformer_mmi/exp/tensorboard
tensorboard --logdir . --port 6008
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It will print the following message:

Serving TensorBoard on localhost; to expose to the network, use a␣
→˓proxy or pass --bind_all
TensorBoard 2.8.0 at http://localhost:6008/ (Press CTRL+C to quit)

Now start your browser and go to http://localhost:6008 to view the tensorboard logs.

• log/log-train-xxxx

It is the detailed training log in text format, same as the one you saw printed to the console during
training.

Usage example

You can use the following command to start the training using 4 GPUs:

export CUDA_VISIBLE_DEVICES="0,1,2,3"
./zipformer_mmi/train.py \

--world-size 4 \
--num-epochs 30 \
--start-epoch 1 \
--full-libri 1 \
--exp-dir zipformer_mmi/exp \
--max-duration 500 \
--use-fp16 1 \
--num-workers 2

Decoding

The decoding part uses checkpoints saved by the training part, so you have to run the training part first.

Hint: There are two kinds of checkpoints:

• (1) epoch-1.pt, epoch-2.pt, . . . , which are saved at the end of each epoch. You can pass --epoch
to zipformer_mmi/decode.py to use them.

• (2) checkpoints-436000.pt, epoch-438000.pt, . . . , which are saved every --save-every-n
batches. You can pass --iter to zipformer_mmi/decode.py to use them.

We suggest that you try both types of checkpoints and choose the one that produces the lowest WERs.

$ cd egs/librispeech/ASR
$ ./zipformer_mmi/decode.py --help

shows the options for decoding.

The following shows the example using epoch-*.pt:

for m in nbest nbest-rescoring-LG nbest-rescoring-3-gram nbest-rescoring-4-gram; do
./zipformer_mmi/decode.py \
--epoch 30 \

(continues on next page)
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(continued from previous page)

--avg 10 \
--exp-dir ./zipformer_mmi/exp/ \
--max-duration 100 \
--lang-dir data/lang_bpe_500 \
--nbest-scale 1.2 \
--hp-scale 1.0 \
--decoding-method $m

done

Export models

zipformer_mmi/export.py supports exporting checkpoints from zipformer_mmi/exp in the following ways.

Export model.state_dict()

Checkpoints saved by zipformer_mmi/train.py also include optimizer.state_dict(). It is useful for resuming
training. But after training, we are interested only in model.state_dict(). You can use the following command to
extract model.state_dict().

./zipformer_mmi/export.py \
--exp-dir ./zipformer_mmi/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--epoch 30 \
--avg 9 \
--jit 0

It will generate a file ./zipformer_mmi/exp/pretrained.pt.

Hint: To use the generated pretrained.pt for zipformer_mmi/decode.py, you can run:

cd zipformer_mmi/exp
ln -s pretrained epoch-9999.pt

And then pass --epoch 9999 --avg 1 --use-averaged-model 0 to ./zipformer_mmi/decode.py.

To use the exported model with ./zipformer_mmi/pretrained.py, you can run:

./zipformer_mmi/pretrained.py \
--checkpoint ./zipformer_mmi/exp/pretrained.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
--method 1best \
/path/to/foo.wav \
/path/to/bar.wav

6.1. Non Streaming ASR 171

https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/zipformer_mmi/export.py


icefall, Release 0.1

Export model using torch.jit.script()

./zipformer_mmi/export.py \
--exp-dir ./zipformer_mmi/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--epoch 30 \
--avg 9 \
--jit 1

It will generate a file cpu_jit.pt in the given exp_dir. You can later load it by torch.jit.load("cpu_jit.pt").

Note cpu in the name cpu_jit.pt means the parameters when loaded into Python are on CPU. You can use
to("cuda") to move them to a CUDA device.

To use the generated files with ./zipformer_mmi/jit_pretrained.py:

./zipformer_mmi/jit_pretrained.py \
--nn-model-filename ./zipformer_mmi/exp/cpu_jit.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
--method 1best \
/path/to/foo.wav \
/path/to/bar.wav

Download pretrained models

If you don’t want to train from scratch, you can download the pretrained models by visiting the following links:

• https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-mmi-2022-12-08

See https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/RESULTS.md for the details of
the above pretrained models

Zipformer CTC Blank Skip

Hint: Please scroll down to the bottom of this page to find download links for pretrained models if you don’t want to
train a model from scratch.

This tutorial shows you how to train a Zipformer model based on the guidance from a co-trained CTC model using
blank skip method with the LibriSpeech dataset.

Note: We use both CTC and RNN-T loss to train. During the forward pass, the encoder output is first used to calculate
the CTC posterior probability; then for each output frame, if its blank posterior is bigger than some threshold, it will
be simply discarded from the encoder output. To prevent information loss, we also put a convolution module similar
to the one used in conformer (referred to as “LConv”) before the frame reduction.
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Data preparation

$ cd egs/librispeech/ASR
$ ./prepare.sh

The script ./prepare.sh handles the data preparation for you, automagically. All you need to do is to run it.

Note: We encourage you to read ./prepare.sh.

The data preparation contains several stages. You can use the following two options:

• --stage

• --stop-stage

to control which stage(s) should be run. By default, all stages are executed.

For example,

$ cd egs/librispeech/ASR
$ ./prepare.sh --stage 0 --stop-stage 0

means to run only stage 0.

To run stage 2 to stage 5, use:

$ ./prepare.sh --stage 2 --stop-stage 5

Hint: If you have pre-downloaded the LibriSpeech dataset and the musan dataset, say, they are saved in /tmp/
LibriSpeech and /tmp/musan, you can modify the dl_dir variable in ./prepare.sh to point to /tmp so that
./prepare.sh won’t re-download them.

Note: All generated files by ./prepare.sh, e.g., features, lexicon, etc, are saved in ./data directory.

We provide the following YouTube video showing how to run ./prepare.sh.

Note: To get the latest news of next-gen Kaldi, please subscribe the following YouTube channel by Nadira Povey:

https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw

https://youtu.be/ofEIoJL-mGM
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Training

For stability, it doesn`t use blank skip method until model warm-up.

Configurable options

$ cd egs/librispeech/ASR
$ ./pruned_transducer_stateless7_ctc_bs/train.py --help

shows you the training options that can be passed from the commandline. The following options are used quite often:

• --full-libri

If it’s True, the training part uses all the training data, i.e., 960 hours. Otherwise, the training part uses only the
subset train-clean-100, which has 100 hours of training data.

Caution: The training set is perturbed by speed with two factors: 0.9 and 1.1. If --full-libri is True,
each epoch actually processes 3x960 == 2880 hours of data.

• --num-epochs

It is the number of epochs to train. For instance, ./pruned_transducer_stateless7_ctc_bs/train.py
--num-epochs 30 trains for 30 epochs and generates epoch-1.pt, epoch-2.pt, . . . , epoch-30.pt in the
folder ./pruned_transducer_stateless7_ctc_bs/exp.

• --start-epoch

It’s used to resume training. ./pruned_transducer_stateless7_ctc_bs/train.py --start-epoch 10
loads the checkpoint ./pruned_transducer_stateless7_ctc_bs/exp/epoch-9.pt and starts training
from epoch 10, based on the state from epoch 9.

• --world-size

It is used for multi-GPU single-machine DDP training.

– (a) If it is 1, then no DDP training is used.

– (b) If it is 2, then GPU 0 and GPU 1 are used for DDP training.

The following shows some use cases with it.

Use case 1: You have 4 GPUs, but you only want to use GPU 0 and GPU 2 for training. You can do
the following:

$ cd egs/librispeech/ASR
$ export CUDA_VISIBLE_DEVICES="0,2"
$ ./pruned_transducer_stateless7_ctc_bs/train.py --world-size 2

Use case 2: You have 4 GPUs and you want to use all of them for training. You can do the following:

$ cd egs/librispeech/ASR
$ ./pruned_transducer_stateless7_ctc_bs/train.py --world-size 4

Use case 3: You have 4 GPUs but you only want to use GPU 3 for training. You can do the following:
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$ cd egs/librispeech/ASR
$ export CUDA_VISIBLE_DEVICES="3"
$ ./pruned_transducer_stateless7_ctc_bs/train.py --world-size 1

Caution: Only multi-GPU single-machine DDP training is implemented at present. Multi-GPU multi-
machine DDP training will be added later.

• --max-duration

It specifies the number of seconds over all utterances in a batch, before padding. If you encounter CUDA OOM,
please reduce it.

Hint: Due to padding, the number of seconds of all utterances in a batch will usually be larger than
--max-duration.

A larger value for --max-duration may cause OOM during training, while a smaller value may increase the
training time. You have to tune it.

Pre-configured options

There are some training options, e.g., weight decay, number of warmup steps, results dir, etc, that
are not passed from the commandline. They are pre-configured by the function get_params() in
pruned_transducer_stateless7_ctc_bs/train.py

You don’t need to change these pre-configured parameters. If you really need to change them, please modify ./
pruned_transducer_stateless7_ctc_bs/train.py directly.

Training logs

Training logs and checkpoints are saved in pruned_transducer_stateless7_ctc_bs/exp. You will find the fol-
lowing files in that directory:

• epoch-1.pt, epoch-2.pt, . . .

These are checkpoint files saved at the end of each epoch, containing model state_dict and opti-
mizer state_dict. To resume training from some checkpoint, say epoch-10.pt, you can use:

$ ./pruned_transducer_stateless7_ctc_bs/train.py --start-epoch 11

• checkpoint-436000.pt, checkpoint-438000.pt, . . .

These are checkpoint files saved every --save-every-n batches, containing model state_dict
and optimizer state_dict. To resume training from some checkpoint, say checkpoint-436000,
you can use:

$ ./pruned_transducer_stateless7_ctc_bs/train.py --start-batch␣
→˓436000

• tensorboard/

This folder contains tensorBoard logs. Training loss, validation loss, learning rate, etc, are recorded
in these logs. You can visualize them by:
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$ cd pruned_transducer_stateless7_ctc_bs/exp/tensorboard
$ tensorboard dev upload --logdir . --description "Zipformer-CTC co-
→˓training using blank skip for LibriSpeech with icefall"

It will print something like below:

TensorFlow installation not found - running with reduced feature␣
→˓set.
Upload started and will continue reading any new data as it's added␣
→˓to the logdir.

To stop uploading, press Ctrl-C.

New experiment created. View your TensorBoard at: https://
→˓tensorboard.dev/experiment/xyOZUKpEQm62HBIlUD4uPA/

Note there is a URL in the above output. Click it and you will see tensorboard.

Hint: If you don’t have access to google, you can use the following command to view the tensorboard log
locally:

cd pruned_transducer_stateless7_ctc_bs/exp/tensorboard
tensorboard --logdir . --port 6008

It will print the following message:

Serving TensorBoard on localhost; to expose to the network, use a␣
→˓proxy or pass --bind_all
TensorBoard 2.8.0 at http://localhost:6008/ (Press CTRL+C to quit)

Now start your browser and go to http://localhost:6008 to view the tensorboard logs.

• log/log-train-xxxx

It is the detailed training log in text format, same as the one you saw printed to the console during
training.

Usage example

You can use the following command to start the training using 4 GPUs:

export CUDA_VISIBLE_DEVICES="0,1,2,3"
./pruned_transducer_stateless7_ctc_bs/train.py \
--world-size 4 \
--num-epochs 30 \
--start-epoch 1 \
--full-libri 1 \
--exp-dir pruned_transducer_stateless7_ctc_bs/exp \
--max-duration 600 \
--use-fp16 1
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Decoding

The decoding part uses checkpoints saved by the training part, so you have to run the training part first.

Hint: There are two kinds of checkpoints:

• (1) epoch-1.pt, epoch-2.pt, . . . , which are saved at the end of each epoch. You can pass --epoch
to pruned_transducer_stateless7_ctc_bs/ctc_guide_decode_bs.py to use them.

• (2) checkpoints-436000.pt, epoch-438000.pt, . . . , which are saved every --save-every-n
batches. You can pass --iter to pruned_transducer_stateless7_ctc_bs/
ctc_guide_decode_bs.py to use them.

We suggest that you try both types of checkpoints and choose the one that produces the lowest WERs.

$ cd egs/librispeech/ASR
$ ./pruned_transducer_stateless7_ctc_bs/ctc_guide_decode_bs.py --help

shows the options for decoding.

The following shows the example using epoch-*.pt:

for m in greedy_search fast_beam_search modified_beam_search; do
./pruned_transducer_stateless7_ctc_bs/ctc_guide_decode_bs.py \

--epoch 30 \
--avg 13 \
--exp-dir pruned_transducer_stateless7_ctc_bs/exp \
--max-duration 600 \
--decoding-method $m

done

To test CTC branch, you can use the following command:

for m in ctc-decoding 1best; do
./pruned_transducer_stateless7_ctc_bs/ctc_guide_decode_bs.py \

--epoch 30 \
--avg 13 \
--exp-dir pruned_transducer_stateless7_ctc_bs/exp \
--max-duration 600 \
--decoding-method $m

done

Export models

pruned_transducer_stateless7_ctc_bs/export.py supports exporting checkpoints from
pruned_transducer_stateless7_ctc_bs/exp in the following ways.
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Export model.state_dict()

Checkpoints saved by pruned_transducer_stateless7_ctc_bs/train.py also include optimizer.
state_dict(). It is useful for resuming training. But after training, we are interested only in model.state_dict().
You can use the following command to extract model.state_dict().

./pruned_transducer_stateless7_ctc_bs/export.py \
--exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--epoch 30 \
--avg 13 \
--jit 0

It will generate a file ./pruned_transducer_stateless7_ctc_bs/exp/pretrained.pt.

Hint: To use the generated pretrained.pt for pruned_transducer_stateless7_ctc_bs/
ctc_guide_decode_bs.py, you can run:

cd pruned_transducer_stateless7_ctc_bs/exp
ln -s pretrained epoch-9999.pt

And then pass --epoch 9999 --avg 1 --use-averaged-model 0 to ./pruned_transducer_stateless7_ctc_bs/
ctc_guide_decode_bs.py.

To use the exported model with ./pruned_transducer_stateless7_ctc_bs/pretrained.py, you can run:

./pruned_transducer_stateless7_ctc_bs/pretrained.py \
--checkpoint ./pruned_transducer_stateless7_ctc_bs/exp/pretrained.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
--method greedy_search \
/path/to/foo.wav \
/path/to/bar.wav

To test CTC branch using the exported model with ./pruned_transducer_stateless7_ctc_bs/
pretrained_ctc.py:

./pruned_transducer_stateless7_ctc_bs/jit_pretrained_ctc.py \
--checkpoint ./pruned_transducer_stateless7_ctc_bs/exp/pretrained.pt \
--bpe-model data/lang_bpe_500/bpe.model \
--method ctc-decoding \
--sample-rate 16000 \
/path/to/foo.wav \
/path/to/bar.wav
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Export model using torch.jit.script()

./pruned_transducer_stateless7_ctc_bs/export.py \
--exp-dir ./pruned_transducer_stateless7_ctc_bs/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--epoch 30 \
--avg 13 \
--jit 1

It will generate a file cpu_jit.pt in the given exp_dir. You can later load it by torch.jit.load("cpu_jit.pt").

Note cpu in the name cpu_jit.pt means the parameters when loaded into Python are on CPU. You can use
to("cuda") to move them to a CUDA device.

To use the generated files with ./pruned_transducer_stateless7_ctc_bs/jit_pretrained.py:

./pruned_transducer_stateless7_ctc_bs/jit_pretrained.py \
--nn-model-filename ./pruned_transducer_stateless7_ctc_bs/exp/cpu_jit.pt \
/path/to/foo.wav \
/path/to/bar.wav

To test CTC branch using the generated files with ./pruned_transducer_stateless7_ctc_bs/
jit_pretrained_ctc.py:

./pruned_transducer_stateless7_ctc_bs/jit_pretrained_ctc.py \
--model-filename ./pruned_transducer_stateless7_ctc_bs/exp/cpu_jit.pt \
--bpe-model data/lang_bpe_500/bpe.model \
--method ctc-decoding \
--sample-rate 16000 \
/path/to/foo.wav \
/path/to/bar.wav

Download pretrained models

If you don’t want to train from scratch, you can download the pretrained models by visiting the following links:

• trained on LibriSpeech 100h: https://huggingface.co/yfyeung/icefall-asr-librispeech-pruned_
transducer_stateless7_ctc_bs-2022-12-14

• trained on LibriSpeech 960h: https://huggingface.co/yfyeung/icefall-asr-librispeech-pruned_
transducer_stateless7_ctc_bs-2023-01-29

See https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/RESULTS.md for the details of
the above pretrained models
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Distillation with HuBERT

This tutorial shows you how to perform knowledge distillation in icefall with the LibriSpeech dataset. The distillation
method used here is called “Multi Vector Quantization Knowledge Distillation” (MVQ-KD). Please have a look at
our paper Predicting Multi-Codebook Vector Quantization Indexes for Knowledge Distillation for more details about
MVQ-KD.

Note: This tutorial is based on recipe pruned_transducer_stateless4. Currently, we only implement MVQ-KD in this
recipe. However, MVQ-KD is theoretically applicable to all recipes with only minor changes needed. Feel free to try
out MVQ-KD in different recipes. If you encounter any problems, please open an issue here icefall.

Note: We assume you have read the page Installation and have setup the environment for icefall.

Hint: We recommend you to use a GPU or several GPUs to run this recipe.

Data preparation

We first prepare necessary training data for LibriSpeech. This is the same as in Pruned transducer statelessX.

Hint: The data preparation is the same as other recipes on LibriSpeech dataset, if you have finished this step, you can
skip to Codebook index preparation directly.

$ cd egs/librispeech/ASR
$ ./prepare.sh

The script ./prepare.sh handles the data preparation for you, automagically. All you need to do is to run it.

The data preparation contains several stages, you can use the following two options:

• --stage

• --stop_stage

to control which stage(s) should be run. By default, all stages are executed.

For example,

$ cd egs/librispeech/ASR
$ ./prepare.sh --stage 0 --stop_stage 0 # run only stage 0
$ ./prepare.sh --stage 2 --stop_stage 5 # run from stage 2 to stage 5

Hint: If you have pre-downloaded the LibriSpeech dataset and the musan dataset, say, they are saved in /tmp/
LibriSpeech and /tmp/musan, you can modify the dl_dir variable in ./prepare.sh to point to /tmp so that
./prepare.sh won’t re-download them.

Note: All generated files by ./prepare.sh, e.g., features, lexicon, etc, are saved in ./data directory.
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We provide the following YouTube video showing how to run ./prepare.sh.

Note: To get the latest news of next-gen Kaldi, please subscribe the following YouTube channel by Nadira Povey:

https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw

https://youtu.be/ofEIoJL-mGM

Codebook index preparation

Here, we prepare necessary data for MVQ-KD. This requires the generation of codebook indexes (please read our
paper. if you are interested in details). In this tutorial, we use the pre-computed codebook indexes for convenience.
The only thing you need to do is to run ./distillation_with_hubert.sh.

Note: There are 5 stages in total, the first and second stage will be automatically skipped when choosing to downloaded
codebook indexes prepared by icefall. Of course, you can extract and compute the codebook indexes by yourself. This
will require you downloading a HuBERT-XL model and it can take a while for the extraction of codebook indexes.

As usual, you can control the stages you want to run by specifying the following two options:

• --stage

• --stop_stage

For example,

$ cd egs/librispeech/ASR
$ ./distillation_with_hubert.sh --stage 0 --stop_stage 0 # run only stage 0
$ ./distillation_with_hubert.sh --stage 2 --stop_stage 4 # run from stage 2 to stage 5

Here are a few options in ./distillation_with_hubert.sh you need to know before you proceed.

• --full_libri If True, use full 960h data. Otherwise only train-clean-100 will be used

• --use_extracted_codebook If True, the first two stages will be skipped and the codebook indexes uploaded
by us will be downloaded.

Since we are using the pre-computed codebook indexes, we set use_extracted_codebook=True. If you want to do
full LibriSpeech experiments, please set full_libri=True.

The following command downloads the pre-computed codebook indexes and prepares MVQ-augmented training man-
ifests.

$ ./distillation_with_hubert.sh --stage 2 --stop_stage 2 # run only stage 2

Please see the following screenshot for the output of an example execution.

Hint: The codebook indexes we prepared for you in this tutorial are extracted from the 36-th layer of
a fine-tuned HuBERT-XL model with 8 codebooks. If you want to try other configurations, please set
use_extracted_codebook=False and set embedding_layer and num_codebooks by yourself.

Now, you should see the following files under the directory ./data/vq_fbank_layer36_cb8.

Whola! You are ready to perform knowledge distillation training now!
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Fig. 6.6: Downloading codebook indexes and preparing training manifest.

Fig. 6.7: MVQ-augmented training manifests.
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Training

To perform training, please run stage 3 by executing the following command.

$ ./prepare.sh --stage 3 --stop_stage 3 # run MVQ training

Here is the code snippet for training:

WORLD_SIZE=$(echo ${CUDA_VISIBLE_DEVICES} | awk '{n=split($1, _, ","); print n}')

./pruned_transducer_stateless6/train.py \
--manifest-dir ./data/vq_fbank_layer36_cb8 \
--master-port 12359 \
--full-libri $full_libri \
--spec-aug-time-warp-factor -1 \
--max-duration 300 \
--world-size ${WORLD_SIZE} \
--num-epochs 30 \
--exp-dir $exp_dir \
--enable-distillation True \
--codebook-loss-scale 0.01

There are a few training arguments in the following training commands that should be paid attention to.

• --enable-distillation If True, knowledge distillation training is enabled.

• --codebook-loss-scale The scale of the knowledge distillation loss.

• --manifest-dir The path to the MVQ-augmented manifest.

Decoding

After training finished, you can test the performance on using the following command.

export CUDA_VISIBLE_DEVICES=0
./pruned_transducer_stateless6/train.py \
--decoding-method "modified_beam_search" \
--epoch 30 \
--avg 10 \
--max-duration 200 \
--exp-dir $exp_dir \
--enable-distillation True

You should get similar results as here.

That’s all! Feel free to experiment with your own setups and report your results. If you encounter any problems during
training, please open up an issue here.
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6.1.3 TIMIT

TDNN-LiGRU-CTC

This tutorial shows you how to run a TDNN-LiGRU-CTC model with the TIMIT dataset.

Hint: We assume you have read the page Installation and have setup the environment for icefall.

Data preparation

$ cd egs/timit/ASR
$ ./prepare.sh

The script ./prepare.sh handles the data preparation for you, automagically. All you need to do is to run it.

The data preparation contains several stages, you can use the following two options:

• --stage

• --stop-stage

to control which stage(s) should be run. By default, all stages are executed.

For example,

$ cd egs/timit/ASR
$ ./prepare.sh --stage 0 --stop-stage 0

means to run only stage 0.

To run stage 2 to stage 5, use:

$ ./prepare.sh --stage 2 --stop-stage 5

Training

Now describing the training of TDNN-LiGRU-CTC model, contained in the tdnn_ligru_ctc folder.

Hint: TIMIT is a very small dataset. So one GPU is enough.

The command to run the training part is:

$ cd egs/timit/ASR
$ export CUDA_VISIBLE_DEVICES="0"
$ ./tdnn_ligru_ctc/train.py

By default, it will run 25 epochs. Training logs and checkpoints are saved in tdnn_ligru_ctc/exp.

In tdnn_ligru_ctc/exp, you will find the following files:

• epoch-0.pt, epoch-1.pt, . . . , epoch-29.pt

These are checkpoint files, containing model state_dict and optimizer state_dict. To resume training from
some checkpoint, say epoch-10.pt, you can use:
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$ ./tdnn_ligru_ctc/train.py --start-epoch 11

• tensorboard/

This folder contains TensorBoard logs. Training loss, validation loss, learning rate, etc, are recorded in these
logs. You can visualize them by:

$ cd tdnn_ligru_ctc/exp/tensorboard
$ tensorboard dev upload --logdir . --description "TDNN ligru training for␣
→˓timit with icefall"

• log/log-train-xxxx

It is the detailed training log in text format, same as the one you saw printed to the console during training.

To see available training options, you can use:

$ ./tdnn_ligru_ctc/train.py --help

Other training options, e.g., learning rate, results dir, etc., are pre-configured in the function get_params() in
tdnn_ligru_ctc/train.py. Normally, you don’t need to change them. You can change them by modifying the code,
if you want.

Decoding

The decoding part uses checkpoints saved by the training part, so you have to run the training part first.

The command for decoding is:

$ export CUDA_VISIBLE_DEVICES="0"
$ ./tdnn_ligru_ctc/decode.py

You will see the WER in the output log.

Decoded results are saved in tdnn_ligru_ctc/exp.

$ ./tdnn_ligru_ctc/decode.py --help

shows you the available decoding options.

Some commonly used options are:

• --epoch

You can select which checkpoint to be used for decoding. For instance, ./tdnn_ligru_ctc/decode.py
--epoch 10 means to use ./tdnn_ligru_ctc/exp/epoch-10.pt for decoding.

• --avg

It’s related to model averaging. It specifies number of checkpoints to be averaged. The averaged model is used
for decoding. For example, the following command:

$ ./tdnn_ligru_ctc/decode.py --epoch 25 --avg 17

uses the average of epoch-9.pt, epoch-10.pt, epoch-11.pt, epoch-12.pt, epoch-13.pt, epoch-14.pt,
epoch-15.pt, epoch-16.pt, epoch-17.pt, epoch-18.pt, epoch-19.pt, epoch-20.pt, epoch-21.pt,
epoch-22.pt, epoch-23.pt, epoch-24.pt and epoch-25.pt for decoding.
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• --export

If it is True, i.e., ./tdnn_ligru_ctc/decode.py --export 1, the code will save the averaged model to
tdnn_ligru_ctc/exp/pretrained.pt. See Pre-trained Model for how to use it.

Pre-trained Model

We have uploaded the pre-trained model to https://huggingface.co/luomingshuang/icefall_asr_timit_tdnn_ligru_ctc.

The following shows you how to use the pre-trained model.

Install kaldifeat

kaldifeat is used to extract features for a single sound file or multiple sound files at the same time.

Please refer to https://github.com/csukuangfj/kaldifeat for installation.

Download the pre-trained model

$ cd egs/timit/ASR
$ mkdir tmp-ligru
$ cd tmp-ligru
$ git lfs install
$ git clone https://huggingface.co/luomingshuang/icefall_asr_timit_tdnn_ligru_ctc

Caution: You have to use git lfs to download the pre-trained model.

Caution: In order to use this pre-trained model, your k2 version has to be v1.7 or later.

After downloading, you will have the following files:

$ cd egs/timit/ASR
$ tree tmp-ligru

tmp-ligru/
`-- icefall_asr_timit_tdnn_ligru_ctc

|-- README.md
|-- data
| |-- lang_phone
| | |-- HLG.pt
| | |-- tokens.txt
| | `-- words.txt
| `-- lm
| `-- G_4_gram.pt
|-- exp
| `-- pretrained_average_9_25.pt
`-- test_wavs

|-- FDHC0_SI1559.WAV
(continues on next page)
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(continued from previous page)

|-- FELC0_SI756.WAV
|-- FMGD0_SI1564.WAV
`-- trans.txt

6 directories, 10 files

File descriptions:
• data/lang_phone/HLG.pt

It is the decoding graph.

• data/lang_phone/tokens.txt

It contains tokens and their IDs.

• data/lang_phone/words.txt

It contains words and their IDs.

• data/lm/G_4_gram.pt

It is a 4-gram LM, useful for LM rescoring.

• exp/pretrained.pt

It contains pre-trained model parameters, obtained by averaging checkpoints from epoch-9.pt to
epoch-25.pt. Note: We have removed optimizer state_dict to reduce file size.

• test_waves/*.WAV

It contains some test sound files from timit TEST dataset.

• test_waves/trans.txt

It contains the reference transcripts for the sound files in test_waves/.

The information of the test sound files is listed below:

$ ffprobe -show_format tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FDHC0_
→˓SI1559.WAV

Input #0, nistsphere, from 'tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FDHC0_
→˓SI1559.WAV':
Metadata:
database_id : TIMIT
database_version: 1.0
utterance_id : dhc0_si1559
sample_min : -4176
sample_max : 5984

Duration: 00:00:03.40, bitrate: 258 kb/s
Stream #0:0: Audio: pcm_s16le, 16000 Hz, 1 channels, s16, 256 kb/s

$ ffprobe -show_format tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FELC0_SI756.
→˓WAV

Input #0, nistsphere, from 'tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FELC0_
→˓SI756.WAV':
Metadata:
database_id : TIMIT

(continues on next page)
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(continued from previous page)

database_version: 1.0
utterance_id : elc0_si756
sample_min : -1546
sample_max : 1989

Duration: 00:00:04.19, bitrate: 257 kb/s
Stream #0:0: Audio: pcm_s16le, 16000 Hz, 1 channels, s16, 256 kb/s

$ ffprobe -show_format tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FMGD0_
→˓SI1564.WAV

Input #0, nistsphere, from 'tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FMGD0_
→˓SI1564.WAV':
Metadata:
database_id : TIMIT
database_version: 1.0
utterance_id : mgd0_si1564
sample_min : -7626
sample_max : 10573

Duration: 00:00:04.44, bitrate: 257 kb/s
Stream #0:0: Audio: pcm_s16le, 16000 Hz, 1 channels, s16, 256 kb/s

Inference with a pre-trained model

$ cd egs/timit/ASR
$ ./tdnn_ligru_ctc/pretrained.py --help

shows the usage information of ./tdnn_ligru_ctc/pretrained.py.

To decode with 1best method, we can use:

./tdnn_ligru_ctc/pretrained.py
--method 1best
--checkpoint ./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/exp/pretrained_average_9_25.

→˓pt
--words-file ./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/data/lang_phone/words.txt
--HLG ./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/data/lang_phone/HLG.pt
./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FDHC0_SI1559.WAV
./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FELC0_SI756.WAV
./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FMGD0_SI1564.WAV

The output is:

2021-11-08 20:41:33,660 INFO [pretrained.py:169] device: cuda:0
2021-11-08 20:41:33,660 INFO [pretrained.py:171] Creating model
2021-11-08 20:41:38,680 INFO [pretrained.py:183] Loading HLG from ./tmp-ligru/icefall_
→˓asr_timit_tdnn_ligru_ctc/data/lang_phone/HLG.pt
2021-11-08 20:41:38,695 INFO [pretrained.py:200] Constructing Fbank computer
2021-11-08 20:41:38,697 INFO [pretrained.py:210] Reading sound files: ['./tmp-ligru/
→˓icefall_asr_timit_tdnn_ligru_ctc/test_waves/FDHC0_SI1559.WAV', './tmp-ligru/icefall_
→˓asr_timit_tdnn_ligru_ctc/test_waves/FELC0_SI756.WAV', './tmp-ligru/icefall_asr_timit_
→˓tdnn_ligru_ctc/test_waves/FMGD0_SI1564.WAV']

(continues on next page)
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(continued from previous page)

2021-11-08 20:41:38,704 INFO [pretrained.py:216] Decoding started
2021-11-08 20:41:39,819 INFO [pretrained.py:246] Use HLG decoding
2021-11-08 20:41:39,829 INFO [pretrained.py:267]
./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FDHC0_SI1559.WAV:
sil dh ih sh uw ah l iy v iy z ih sil p r aa sil k s ih m ey dx ih sil d w uh dx ih w ih␣
→˓s f iy l ih ng w ih th ih n ih m s eh l f sil jh

./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FELC0_SI756.WAV:
sil m ih sil t ih r iy s sil s er r ih m ih sil m aa l ih sil k l ey sil r eh sil d w ay␣
→˓sil d aa r sil b ah f sil jh

./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FMGD0_SI1564.WAV:
sil hh ah z sil b ih sil g r iy w ah z sil d aw n ih sil b ay s sil n ey sil w eh l f eh␣
→˓n s ih z eh n dh eh r w er sil g r ey z ih ng sil k ae dx l sil

2021-11-08 20:41:39,829 INFO [pretrained.py:269] Decoding Done

To decode with whole-lattice-rescoring methond, you can use

./tdnn_ligru_ctc/pretrained.py \
--method whole-lattice-rescoring \
--checkpoint ./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/exp/pretrained_average_9_25.

→˓pt \
--words-file ./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/data/lang_phone/words.txt \
--HLG ./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/data/lang_phone/HLG.pt \
--G ./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/data/lm/G_4_gram.pt \
--ngram-lm-scale 0.1 \
./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FDHC0_SI1559.WAV
./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FELC0_SI756.WAV
./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FMGD0_SI1564.WAV

The decoding output is:

2021-11-08 20:37:50,693 INFO [pretrained.py:169] device: cuda:0
2021-11-08 20:37:50,693 INFO [pretrained.py:171] Creating model
2021-11-08 20:37:54,693 INFO [pretrained.py:183] Loading HLG from ./tmp-ligru/icefall_
→˓asr_timit_tdnn_ligru_ctc/data/lang_phone/HLG.pt
2021-11-08 20:37:54,705 INFO [pretrained.py:191] Loading G from ./tmp-ligru/icefall_asr_
→˓timit_tdnn_ligru_ctc/data/lm/G_4_gram.pt
2021-11-08 20:37:54,714 INFO [pretrained.py:200] Constructing Fbank computer
2021-11-08 20:37:54,715 INFO [pretrained.py:210] Reading sound files: ['./tmp-ligru/
→˓icefall_asr_timit_tdnn_ligru_ctc/test_waves/FDHC0_SI1559.WAV', './tmp-ligru/icefall_
→˓asr_timit_tdnn_ligru_ctc/test_waves/FELC0_SI756.WAV', './tmp-ligru/icefall_asr_timit_
→˓tdnn_ligru_ctc/test_waves/FMGD0_SI1564.WAV']
2021-11-08 20:37:54,720 INFO [pretrained.py:216] Decoding started
2021-11-08 20:37:55,808 INFO [pretrained.py:251] Use HLG decoding + LM rescoring
2021-11-08 20:37:56,348 INFO [pretrained.py:267]
./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FDHC0_SI1559.WAV:
sil dh ih sh uw ah l iy v iy z ah sil p r aa sil k s ih m ey dx ih sil d w uh dx iy w ih␣
→˓s f iy l iy ng w ih th ih n ih m s eh l f sil jh

(continues on next page)
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./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FELC0_SI756.WAV:
sil m ih sil t ih r iy l s sil s er r eh m ih sil m aa l ih ng sil k l ey sil r eh sil d␣
→˓w ay sil d aa r sil b ah f sil jh ch

./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FMGD0_SI1564.WAV:
sil hh ah z sil b ih n sil g r iy w ah z sil b aw n ih sil b ay s sil n ey sil w er l f␣
→˓eh n s ih z eh n dh eh r w er sil g r ey z ih ng sil k ae dx l sil

2021-11-08 20:37:56,348 INFO [pretrained.py:269] Decoding Done

Colab notebook

We provide a colab notebook for decoding with pre-trained model.

Congratulations! You have finished the TDNN-LiGRU-CTC recipe on timit in icefall.

TDNN-LSTM-CTC

This tutorial shows you how to run a TDNN-LSTM-CTC model with the TIMIT dataset.

Hint: We assume you have read the page Installation and have setup the environment for icefall.

Data preparation

$ cd egs/timit/ASR
$ ./prepare.sh

The script ./prepare.sh handles the data preparation for you, automagically. All you need to do is to run it.

The data preparation contains several stages, you can use the following two options:

• --stage

• --stop-stage

to control which stage(s) should be run. By default, all stages are executed.

For example,

$ cd egs/timit/ASR
$ ./prepare.sh --stage 0 --stop-stage 0

means to run only stage 0.

To run stage 2 to stage 5, use:

$ ./prepare.sh --stage 2 --stop-stage 5
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Training

Now describing the training of TDNN-LSTM-CTC model, contained in the tdnn_lstm_ctc folder.

Hint: TIMIT is a very small dataset. So one GPU for training is enough.

The command to run the training part is:

$ cd egs/timit/ASR
$ export CUDA_VISIBLE_DEVICES="0"
$ ./tdnn_lstm_ctc/train.py

By default, it will run 25 epochs. Training logs and checkpoints are saved in tdnn_lstm_ctc/exp.

In tdnn_lstm_ctc/exp, you will find the following files:

• epoch-0.pt, epoch-1.pt, . . . , epoch-29.pt

These are checkpoint files, containing model state_dict and optimizer state_dict. To resume training from
some checkpoint, say epoch-10.pt, you can use:

$ ./tdnn_lstm_ctc/train.py --start-epoch 11

• tensorboard/

This folder contains TensorBoard logs. Training loss, validation loss, learning rate, etc, are recorded in these
logs. You can visualize them by:

$ cd tdnn_lstm_ctc/exp/tensorboard
$ tensorboard dev upload --logdir . --description "TDNN LSTM training for␣
→˓timit with icefall"

• log/log-train-xxxx

It is the detailed training log in text format, same as the one you saw printed to the console during training.

To see available training options, you can use:

$ ./tdnn_lstm_ctc/train.py --help

Other training options, e.g., learning rate, results dir, etc., are pre-configured in the function get_params() in
tdnn_lstm_ctc/train.py. Normally, you don’t need to change them. You can change them by modifying the code, if
you want.

Decoding

The decoding part uses checkpoints saved by the training part, so you have to run the training part first.

The command for decoding is:

$ export CUDA_VISIBLE_DEVICES="0"
$ ./tdnn_lstm_ctc/decode.py

You will see the WER in the output log.

Decoded results are saved in tdnn_lstm_ctc/exp.
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$ ./tdnn_lstm_ctc/decode.py --help

shows you the available decoding options.

Some commonly used options are:

• --epoch

You can select which checkpoint to be used for decoding. For instance, ./tdnn_lstm_ctc/decode.py
--epoch 10 means to use ./tdnn_lstm_ctc/exp/epoch-10.pt for decoding.

• --avg

It’s related to model averaging. It specifies number of checkpoints to be averaged. The averaged model is used
for decoding. For example, the following command:

$ ./tdnn_lstm_ctc/decode.py --epoch 25 --avg 10

uses the average of epoch-16.pt, epoch-17.pt, epoch-18.pt, epoch-19.pt, epoch-20.pt, epoch-21.
pt, epoch-22.pt, epoch-23.pt, epoch-24.pt and epoch-25.pt for decoding.

• --export

If it is True, i.e., ./tdnn_lstm_ctc/decode.py --export 1, the code will save the averaged model to
tdnn_lstm_ctc/exp/pretrained.pt. See Pre-trained Model for how to use it.

Pre-trained Model

We have uploaded the pre-trained model to https://huggingface.co/luomingshuang/icefall_asr_timit_tdnn_lstm_ctc.

The following shows you how to use the pre-trained model.

Install kaldifeat

kaldifeat is used to extract features for a single sound file or multiple sound files at the same time.

Please refer to https://github.com/csukuangfj/kaldifeat for installation.

Download the pre-trained model

$ cd egs/timit/ASR
$ mkdir tmp-lstm
$ cd tmp-lstm
$ git lfs install
$ git clone https://huggingface.co/luomingshuang/icefall_asr_timit_tdnn_lstm_ctc

Caution: You have to use git lfs to download the pre-trained model.

Caution: In order to use this pre-trained model, your k2 version has to be v1.7 or later.

After downloading, you will have the following files:
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$ cd egs/timit/ASR
$ tree tmp-lstm

tmp-lstm/
`-- icefall_asr_timit_tdnn_lstm_ctc

|-- README.md
|-- data
| |-- lang_phone
| | |-- HLG.pt
| | |-- tokens.txt
| | `-- words.txt
| `-- lm
| `-- G_4_gram.pt
|-- exp
| `-- pretrained_average_16_25.pt
`-- test_wavs

|-- FDHC0_SI1559.WAV
|-- FELC0_SI756.WAV
|-- FMGD0_SI1564.WAV
`-- trans.txt

6 directories, 10 files

File descriptions:
• data/lang_phone/HLG.pt

It is the decoding graph.

• data/lang_phone/tokens.txt

It contains tokens and their IDs.

• data/lang_phone/words.txt

It contains words and their IDs.

• data/lm/G_4_gram.pt

It is a 4-gram LM, useful for LM rescoring.

• exp/pretrained.pt

It contains pre-trained model parameters, obtained by averaging checkpoints from epoch-16.pt to
epoch-25.pt. Note: We have removed optimizer state_dict to reduce file size.

• test_waves/*.WAV

It contains some test sound files from timit TEST dataset.

• test_waves/trans.txt

It contains the reference transcripts for the sound files in test_waves/.

The information of the test sound files is listed below:

$ ffprobe -show_format tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/test_waves/FDHC0_SI1559.
→˓WAV

Input #0, nistsphere, from 'tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/test_waves/FDHC0_
(continues on next page)
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→˓SI1559.WAV':
Metadata:
database_id : TIMIT
database_version: 1.0
utterance_id : dhc0_si1559
sample_min : -4176
sample_max : 5984

Duration: 00:00:03.40, bitrate: 258 kb/s
Stream #0:0: Audio: pcm_s16le, 16000 Hz, 1 channels, s16, 256 kb/s

$ ffprobe -show_format tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/test_waves/FELC0_SI756.
→˓WAV

Input #0, nistsphere, from 'tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/test_waves/FELC0_
→˓SI756.WAV':
Metadata:
database_id : TIMIT
database_version: 1.0
utterance_id : elc0_si756
sample_min : -1546
sample_max : 1989

Duration: 00:00:04.19, bitrate: 257 kb/s
Stream #0:0: Audio: pcm_s16le, 16000 Hz, 1 channels, s16, 256 kb/s

$ ffprobe -show_format tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/test_waves/FMGD0_SI1564.
→˓WAV

Input #0, nistsphere, from 'tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/test_waves/FMGD0_
→˓SI1564.WAV':
Metadata:
database_id : TIMIT
database_version: 1.0
utterance_id : mgd0_si1564
sample_min : -7626
sample_max : 10573

Duration: 00:00:04.44, bitrate: 257 kb/s
Stream #0:0: Audio: pcm_s16le, 16000 Hz, 1 channels, s16, 256 kb/s

Inference with a pre-trained model

$ cd egs/timit/ASR
$ ./tdnn_lstm_ctc/pretrained.py --help

shows the usage information of ./tdnn_lstm_ctc/pretrained.py.

To decode with 1best method, we can use:

./tdnn_lstm_ctc/pretrained.py
--method 1best
--checkpoint ./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/exp/pretrained_average_16_25.pt
--words-file ./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/data/lang_phone/words.txt

(continues on next page)
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--HLG ./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/data/lang_phone/HLG.pt
./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/test_waves/FDHC0_SI1559.WAV
./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/test_waves/FELC0_SI756.WAV
./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/test_waves/FMGD0_SI1564.WAV

The output is:

2021-11-08 21:02:49,583 INFO [pretrained.py:169] device: cuda:0
2021-11-08 21:02:49,584 INFO [pretrained.py:171] Creating model
2021-11-08 21:02:53,816 INFO [pretrained.py:183] Loading HLG from ./tmp-lstm/icefall_asr_
→˓timit_tdnn_lstm_ctc/data/lang_phone/HLG.pt
2021-11-08 21:02:53,827 INFO [pretrained.py:200] Constructing Fbank computer
2021-11-08 21:02:53,827 INFO [pretrained.py:210] Reading sound files: ['./tmp-lstm/
→˓icefall_asr_timit_tdnn_lstm_ctc/test_waves/FDHC0_SI1559.WAV', './tmp-lstm/icefall_asr_
→˓timit_tdnn_lstm_ctc/test_waves/FELC0_SI756.WAV', './tmp-lstm/icefall_asr_timit_tdnn_
→˓lstm_ctc/test_waves/FMGD0_SI1564.WAV']
2021-11-08 21:02:53,831 INFO [pretrained.py:216] Decoding started
2021-11-08 21:02:54,380 INFO [pretrained.py:246] Use HLG decoding
2021-11-08 21:02:54,387 INFO [pretrained.py:267]
./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/test_waves/FDHC0_SI1559.WAV:
sil dh ih sh uw ah l iy v iy z ih sil p r aa sil k s ih m ey dx ih sil d w uh dx iy w ih␣
→˓s f iy l iy w ih th ih n ih m s eh l f sil jh

./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/test_waves/FELC0_SI756.WAV:
sil dh ih sil t ih r ih s sil s er r ih m ih sil m aa l ih ng sil k l ey sil r eh sil d␣
→˓w ay sil d aa r sil b ah f sil <UNK> jh

./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/test_waves/FMGD0_SI1564.WAV:
sil hh ae z sil b ih n iy w ah z sil b ae n ih sil b ay s sil n ey sil k eh l f eh n s␣
→˓ih z eh n dh eh r w er sil g r ey z ih ng sil k ae dx l sil

2021-11-08 21:02:54,387 INFO [pretrained.py:269] Decoding Done

To decode with whole-lattice-rescoring methond, you can use

./tdnn_lstm_ctc/pretrained.py \
--method whole-lattice-rescoring \
--checkpoint ./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/exp/pretrained_average_16_25.

→˓pt \
--words-file ./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/data/lang_phone/words.txt \
--HLG ./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/data/lang_phone/HLG.pt \
--G ./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/data/lm/G_4_gram.pt \
--ngram-lm-scale 0.08 \
./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/test_waves/FDHC0_SI1559.WAV
./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/test_waves/FELC0_SI756.WAV
./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/test_waves/FMGD0_SI1564.WAV

The decoding output is:

2021-11-08 20:05:22,739 INFO [pretrained.py:169] device: cuda:0
2021-11-08 20:05:22,739 INFO [pretrained.py:171] Creating model
2021-11-08 20:05:26,959 INFO [pretrained.py:183] Loading HLG from ./tmp-lstm/icefall_asr_

(continues on next page)
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→˓timit_tdnn_lstm_ctc/data/lang_phone/HLG.pt
2021-11-08 20:05:26,971 INFO [pretrained.py:191] Loading G from ./tmp-lstm/icefall_asr_
→˓timit_tdnn_lstm_ctc/data/lm/G_4_gram.pt
2021-11-08 20:05:26,977 INFO [pretrained.py:200] Constructing Fbank computer
2021-11-08 20:05:26,978 INFO [pretrained.py:210] Reading sound files: ['./tmp-lstm/
→˓icefall_asr_timit_tdnn_lstm_ctc/test_waves/FDHC0_SI1559.WAV', './tmp-lstm/icefall_asr_
→˓timit_tdnn_lstm_ctc/test_waves/FELC0_SI756.WAV', './tmp-lstm/icefall_asr_timit_tdnn_
→˓lstm_ctc/test_waves/FMGD0_SI1564.WAV']
2021-11-08 20:05:26,981 INFO [pretrained.py:216] Decoding started
2021-11-08 20:05:27,519 INFO [pretrained.py:251] Use HLG decoding + LM rescoring
2021-11-08 20:05:27,878 INFO [pretrained.py:267]
./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/test_waves/FDHC0_SI1559.WAV:
sil dh ih sh uw l iy v iy z ih sil p r aa sil k s ah m ey dx ih sil w uh dx iy w ih s f␣
→˓iy l ih ng w ih th ih n ih m s eh l f sil jh

./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/test_waves/FELC0_SI756.WAV:
sil dh ih sil t ih r iy ih s sil s er r eh m ih sil n ah l ih ng sil k l ey sil r eh sil␣
→˓d w ay sil d aa r sil b ow f sil jh

./tmp-lstm/icefall_asr_timit_tdnn_lstm_ctc/test_waves/FMGD0_SI1564.WAV:
sil hh ah z sil b ih n iy w ah z sil b ae n ih sil b ay s sil n ey sil k ih l f eh n s␣
→˓ih z eh n dh eh r w er sil g r ey z ih n sil k ae dx l sil

2021-11-08 20:05:27,878 INFO [pretrained.py:269] Decoding Done

Colab notebook

We provide a colab notebook for decoding with pre-trained model.

Congratulations! You have finished the TDNN-LSTM-CTC recipe on timit in icefall.

6.1.4 YesNo

TDNN-CTC

This page shows you how to run the yesno recipe. It contains:

• (1) Prepare data for training

• (2) Train a TDNN model

– (a) View text format logs and visualize TensorBoard logs

– (b) Select device type, i.e., CPU and GPU, for training

– (c) Change training options

– (d) Resume training from a checkpoint

• (3) Decode with a trained model

– (a) Select a checkpoint for decoding

– (b) Model averaging
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• (4) Colab notebook

– (a) It shows you step by step how to setup the environment, how to do training, and how to do decoding

– (b) How to use a pre-trained model

• (5) Inference with a pre-trained model

– (a) Download a pre-trained model, provided by us

– (b) Decode a single sound file with a pre-trained model

– (c) Decode multiple sound files at the same time

It does NOT show you:

• (1) How to train with multiple GPUs

The yesno dataset is so small that CPU is more than enough for training as well as for decoding.

• (2) How to use LM rescoring for decoding

The dataset does not have an LM for rescoring.

Hint: We assume you have read the page Installation and have setup the environment for icefall.

Hint: You don’t need a GPU to run this recipe. It can be run on a CPU. The training part takes less than 30 seconds
on a CPU and you will get the following WER at the end:

[test_set] %WER 0.42% [1 / 240, 0 ins, 1 del, 0 sub ]

Data preparation

$ cd egs/yesno/ASR
$ ./prepare.sh

The script ./prepare.sh handles the data preparation for you, automagically. All you need to do is to run it.

The data preparation contains several stages, you can use the following two options:

• --stage

• --stop-stage

to control which stage(s) should be run. By default, all stages are executed.

For example,

$ cd egs/yesno/ASR
$ ./prepare.sh --stage 0 --stop-stage 0

means to run only stage 0.

To run stage 2 to stage 5, use:

$ ./prepare.sh --stage 2 --stop-stage 5
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Training

We provide only a TDNN model, contained in the tdnn folder, for yesno.

The command to run the training part is:

$ cd egs/yesno/ASR
$ export CUDA_VISIBLE_DEVICES=""
$ ./tdnn/train.py

By default, it will run 15 epochs. Training logs and checkpoints are saved in tdnn/exp.

In tdnn/exp, you will find the following files:

• epoch-0.pt, epoch-1.pt, . . .

These are checkpoint files, containing model state_dict and optimizer state_dict. To resume training from
some checkpoint, say epoch-10.pt, you can use:

$ ./tdnn/train.py --start-epoch 11

• tensorboard/

This folder contains TensorBoard logs. Training loss, validation loss, learning rate, etc, are recorded in these
logs. You can visualize them by:

$ cd tdnn/exp/tensorboard
$ tensorboard dev upload --logdir . --description "TDNN training for yesno␣
→˓with icefall"

It will print something like below:

TensorFlow installation not found - running with reduced feature set.
Upload started and will continue reading any new data as it's added to the␣
→˓logdir.

To stop uploading, press Ctrl-C.

New experiment created. View your TensorBoard at: https://tensorboard.dev/
→˓experiment/yKUbhb5wRmOSXYkId1z9eg/

[2021-08-23T23:49:41] Started scanning logdir.
[2021-08-23T23:49:42] Total uploaded: 135 scalars, 0 tensors, 0 binary␣
→˓objects
Listening for new data in logdir...

Note there is a URL in the above output, click it and you will see the following screenshot:

• log/log-train-xxxx

It is the detailed training log in text format, same as the one you saw printed to the console during training.

Note: By default, ./tdnn/train.py uses GPU 0 for training if GPUs are available. If you have two GPUs, say, GPU
0 and GPU 1, and you want to use GPU 1 for training, you can run:
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Fig. 6.8: TensorBoard screenshot.
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$ export CUDA_VISIBLE_DEVICES="1"
$ ./tdnn/train.py

Since the yesno dataset is very small, containing only 30 sound files for training, and the model in use is also very
small, we use:

$ export CUDA_VISIBLE_DEVICES=""

so that ./tdnn/train.py uses CPU during training.

If you don’t have GPUs, then you don’t need to run export CUDA_VISIBLE_DEVICES="".

To see available training options, you can use:

$ ./tdnn/train.py --help

Other training options, e.g., learning rate, results dir, etc., are pre-configured in the function get_params() in
tdnn/train.py. Normally, you don’t need to change them. You can change them by modifying the code, if you want.

Decoding

The decoding part uses checkpoints saved by the training part, so you have to run the training part first.

The command for decoding is:

$ export CUDA_VISIBLE_DEVICES=""
$ ./tdnn/decode.py

You will see the WER in the output log.

Decoded results are saved in tdnn/exp.

$ ./tdnn/decode.py --help

shows you the available decoding options.

Some commonly used options are:

• --epoch

You can select which checkpoint to be used for decoding. For instance, ./tdnn/decode.py --epoch 10
means to use ./tdnn/exp/epoch-10.pt for decoding.

• --avg

It’s related to model averaging. It specifies number of checkpoints to be averaged. The averaged model is used
for decoding. For example, the following command:

$ ./tdnn/decode.py --epoch 10 --avg 3

uses the average of epoch-8.pt, epoch-9.pt and epoch-10.pt for decoding.

• --export

If it is True, i.e., ./tdnn/decode.py --export 1, the code will save the averaged model to tdnn/exp/
pretrained.pt. See Pre-trained Model for how to use it.
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Pre-trained Model

We have uploaded the pre-trained model to https://huggingface.co/csukuangfj/icefall_asr_yesno_tdnn.

The following shows you how to use the pre-trained model.

Download the pre-trained model

$ cd egs/yesno/ASR
$ mkdir tmp
$ cd tmp
$ git lfs install
$ git clone https://huggingface.co/csukuangfj/icefall_asr_yesno_tdnn

Caution: You have to use git lfs to download the pre-trained model.

After downloading, you will have the following files:

$ cd egs/yesno/ASR
$ tree tmp

tmp/
`-- icefall_asr_yesno_tdnn

|-- README.md
|-- lang_phone
| |-- HLG.pt
| |-- L.pt
| |-- L_disambig.pt
| |-- Linv.pt
| |-- lexicon.txt
| |-- lexicon_disambig.txt
| |-- tokens.txt
| `-- words.txt
|-- lm
| |-- G.arpa
| `-- G.fst.txt
|-- pretrained.pt
`-- test_waves

|-- 0_0_0_1_0_0_0_1.wav
|-- 0_0_1_0_0_0_1_0.wav
|-- 0_0_1_0_0_1_1_1.wav
|-- 0_0_1_0_1_0_0_1.wav
|-- 0_0_1_1_0_0_0_1.wav
|-- 0_0_1_1_0_1_1_0.wav
|-- 0_0_1_1_1_0_0_0.wav
|-- 0_0_1_1_1_1_0_0.wav
|-- 0_1_0_0_0_1_0_0.wav
|-- 0_1_0_0_1_0_1_0.wav
|-- 0_1_0_1_0_0_0_0.wav
|-- 0_1_0_1_1_1_0_0.wav

(continues on next page)
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|-- 0_1_1_0_0_1_1_1.wav
|-- 0_1_1_1_0_0_1_0.wav
|-- 0_1_1_1_1_0_1_0.wav
|-- 1_0_0_0_0_0_0_0.wav
|-- 1_0_0_0_0_0_1_1.wav
|-- 1_0_0_1_0_1_1_1.wav
|-- 1_0_1_1_0_1_1_1.wav
|-- 1_0_1_1_1_1_0_1.wav
|-- 1_1_0_0_0_1_1_1.wav
|-- 1_1_0_0_1_0_1_1.wav
|-- 1_1_0_1_0_1_0_0.wav
|-- 1_1_0_1_1_0_0_1.wav
|-- 1_1_0_1_1_1_1_0.wav
|-- 1_1_1_0_0_1_0_1.wav
|-- 1_1_1_0_1_0_1_0.wav
|-- 1_1_1_1_0_0_1_0.wav
|-- 1_1_1_1_1_0_0_0.wav
`-- 1_1_1_1_1_1_1_1.wav

4 directories, 42 files

$ soxi tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav

Input File : 'tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav'
Channels : 1
Sample Rate : 8000
Precision : 16-bit
Duration : 00:00:06.76 = 54080 samples ~ 507 CDDA sectors
File Size : 108k
Bit Rate : 128k
Sample Encoding: 16-bit Signed Integer PCM

• 0_0_1_0_1_0_0_1.wav

0 means No; 1 means Yes. No and Yes are not in English, but in Hebrew. So this file contains NO NO
YES NO YES NO NO YES.

Download kaldifeat

kaldifeat is used for extracting features from a single or multiple sound files. Please refer to https://github.com/
csukuangfj/kaldifeat to install kaldifeat first.
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Inference with a pre-trained model

$ cd egs/yesno/ASR
$ ./tdnn/pretrained.py --help

shows the usage information of ./tdnn/pretrained.py.

To decode a single file, we can use:

./tdnn/pretrained.py \
--checkpoint ./tmp/icefall_asr_yesno_tdnn/pretrained.pt \
--words-file ./tmp/icefall_asr_yesno_tdnn/lang_phone/words.txt \
--HLG ./tmp/icefall_asr_yesno_tdnn/lang_phone/HLG.pt \
./tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav

The output is:

2021-08-24 12:22:51,621 INFO [pretrained.py:119] {'feature_dim': 23, 'num_classes': 4,
→˓'sample_rate': 8000, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30,
→˓'max_active_states': 10000, 'use_double_scores': True, 'checkpoint': './tmp/icefall_
→˓asr_yesno_tdnn/pretrained.pt', 'words_file': './tmp/icefall_asr_yesno_tdnn/lang_phone/
→˓words.txt', 'HLG': './tmp/icefall_asr_yesno_tdnn/lang_phone/HLG.pt', 'sound_files': ['.
→˓/tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav']}
2021-08-24 12:22:51,645 INFO [pretrained.py:125] device: cpu
2021-08-24 12:22:51,645 INFO [pretrained.py:127] Creating model
2021-08-24 12:22:51,650 INFO [pretrained.py:139] Loading HLG from ./tmp/icefall_asr_
→˓yesno_tdnn/lang_phone/HLG.pt
2021-08-24 12:22:51,651 INFO [pretrained.py:143] Constructing Fbank computer
2021-08-24 12:22:51,652 INFO [pretrained.py:153] Reading sound files: ['./tmp/icefall_
→˓asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav']
2021-08-24 12:22:51,684 INFO [pretrained.py:159] Decoding started
2021-08-24 12:22:51,708 INFO [pretrained.py:198]
./tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav:
NO NO YES NO YES NO NO YES

2021-08-24 12:22:51,708 INFO [pretrained.py:200] Decoding Done

You can see that for the sound file 0_0_1_0_1_0_0_1.wav, the decoding result is NO NO YES NO YES NO NO YES.

To decode multiple files at the same time, you can use

./tdnn/pretrained.py \
--checkpoint ./tmp/icefall_asr_yesno_tdnn/pretrained.pt \
--words-file ./tmp/icefall_asr_yesno_tdnn/lang_phone/words.txt \
--HLG ./tmp/icefall_asr_yesno_tdnn/lang_phone/HLG.pt \
./tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav \
./tmp/icefall_asr_yesno_tdnn/test_waves/1_0_1_1_0_1_1_1.wav

The decoding output is:

2021-08-24 12:25:20,159 INFO [pretrained.py:119] {'feature_dim': 23, 'num_classes': 4,
→˓'sample_rate': 8000, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30,
→˓'max_active_states': 10000, 'use_double_scores': True, 'checkpoint': './tmp/icefall_

(continues on next page)
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→˓asr_yesno_tdnn/pretrained.pt', 'words_file': './tmp/icefall_asr_yesno_tdnn/lang_phone/
→˓words.txt', 'HLG': './tmp/icefall_asr_yesno_tdnn/lang_phone/HLG.pt', 'sound_files': ['.
→˓/tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav', './tmp/icefall_asr_yesno_
→˓tdnn/test_waves/1_0_1_1_0_1_1_1.wav']}
2021-08-24 12:25:20,181 INFO [pretrained.py:125] device: cpu
2021-08-24 12:25:20,181 INFO [pretrained.py:127] Creating model
2021-08-24 12:25:20,185 INFO [pretrained.py:139] Loading HLG from ./tmp/icefall_asr_
→˓yesno_tdnn/lang_phone/HLG.pt
2021-08-24 12:25:20,186 INFO [pretrained.py:143] Constructing Fbank computer
2021-08-24 12:25:20,187 INFO [pretrained.py:153] Reading sound files: ['./tmp/icefall_
→˓asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav',
'./tmp/icefall_asr_yesno_tdnn/test_waves/1_0_1_1_0_1_1_1.wav']
2021-08-24 12:25:20,213 INFO [pretrained.py:159] Decoding started
2021-08-24 12:25:20,287 INFO [pretrained.py:198]
./tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav:
NO NO YES NO YES NO NO YES

./tmp/icefall_asr_yesno_tdnn/test_waves/1_0_1_1_0_1_1_1.wav:
YES NO YES YES NO YES YES YES

2021-08-24 12:25:20,287 INFO [pretrained.py:200] Decoding Done

You can see again that it decodes correctly.

Colab notebook

We do provide a colab notebook for this recipe.

Congratulations! You have finished the simplest speech recognition recipe in icefall.

6.2 Streaming ASR

6.2.1 Introduction

This page shows you how we implement streaming X-former transducer models for ASR.

Hint: X-former transducer here means the encoder of the transducer model uses Multi-Head Attention, like Conformer,
EmFormer etc.

Currently we have implemented two types of streaming models, one uses Conformer as encoder, the other uses Em-
former as encoder.
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Streaming Conformer

The main idea of training a streaming model is to make the model see limited contexts in training time, we can achieve
this by applying a mask to the output of self-attention. In icefall, we implement the streaming conformer the way just
like what WeNet did.

Note: The conformer-transducer recipes in LibriSpeech datasets, like, pruned_transducer_stateless,
pruned_transducer_stateless2, pruned_transducer_stateless3, pruned_transducer_stateless4,
pruned_transducer_stateless5 all support streaming.

Note: Training a streaming conformer model in icefall is almost the same as training a non-streaming model, all
you need to do is passing several extra arguments. See Pruned transducer statelessX for more details.

Hint: If you want to modify a non-streaming conformer recipe to support both streaming and non-streaming, please
refer to this pull request. After adding the code needed by streaming training, you have to re-train it with the extra
arguments metioned in the docs above to get a streaming model.

Streaming Emformer

The Emformer model proposed here uses more complicated techniques. It has a memory bank component to memorize
history information, what’ more, it also introduces right context in training time by hard-copying part of the input
features.

We have three variants of Emformer models in icefall.

• pruned_stateless_emformer_rnnt2 using Emformer from torchaudio, see LibriSpeech recipe.

• conv_emformer_transducer_stateless using ConvEmformer implemented by ourself. Different from the
Emformer in torchaudio, ConvEmformer has a convolution in each layer and uses the mechanisms in our reworked
conformer model. See LibriSpeech recipe.

• conv_emformer_transducer_stateless2 using ConvEmformer implemented by ourself. The only differ-
ence from the above one is that it uses a simplified memory bank. See LibriSpeech recipe.

6.2.2 LibriSpeech

Pruned transducer statelessX

This tutorial shows you how to run a streaming conformer transducer model with the LibriSpeech dataset.

Note: The tutorial is suitable for pruned_transducer_stateless, pruned_transducer_stateless2,
pruned_transducer_stateless4, pruned_transducer_stateless5, We will take pruned_transducer_stateless4 as an
example in this tutorial.

Hint: We assume you have read the page Installation and have setup the environment for icefall.
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Hint: We recommend you to use a GPU or several GPUs to run this recipe.

Hint: Please scroll down to the bottom of this page to find download links for pretrained models if you don’t want to
train a model from scratch.

We use pruned RNN-T to compute the loss.

Note: You can find the paper about pruned RNN-T at the following address:

https://arxiv.org/abs/2206.13236

The transducer model consists of 3 parts:

• Encoder, a.k.a, the transcription network. We use a Conformer model (the reworked version by Daniel Povey)

• Decoder, a.k.a, the prediction network. We use a stateless model consisting of nn.Embedding and nn.Conv1d

• Joiner, a.k.a, the joint network.

Caution: Contrary to the conventional RNN-T models, we use a stateless decoder. That is, it has no recurrent
connections.

Data preparation

Hint: The data preparation is the same as other recipes on LibriSpeech dataset, if you have finished this step, you can
skip to Training directly.

$ cd egs/librispeech/ASR
$ ./prepare.sh

The script ./prepare.sh handles the data preparation for you, automagically. All you need to do is to run it.

The data preparation contains several stages, you can use the following two options:

• --stage

• --stop-stage

to control which stage(s) should be run. By default, all stages are executed.

For example,

$ cd egs/librispeech/ASR
$ ./prepare.sh --stage 0 --stop-stage 0

means to run only stage 0.

To run stage 2 to stage 5, use:

$ ./prepare.sh --stage 2 --stop-stage 5
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Hint: If you have pre-downloaded the LibriSpeech dataset and the musan dataset, say, they are saved in /tmp/
LibriSpeech and /tmp/musan, you can modify the dl_dir variable in ./prepare.sh to point to /tmp so that
./prepare.sh won’t re-download them.

Note: All generated files by ./prepare.sh, e.g., features, lexicon, etc, are saved in ./data directory.

We provide the following YouTube video showing how to run ./prepare.sh.

Note: To get the latest news of next-gen Kaldi, please subscribe the following YouTube channel by Nadira Povey:

https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw

https://youtu.be/ofEIoJL-mGM

Training

Note: We put the streaming and non-streaming model in one recipe, to train a streaming model you only need to add
4 extra options comparing with training a non-streaming model. These options are --dynamic-chunk-training,
--num-left-chunks, --causal-convolution, --short-chunk-size. You can see the configurable options be-
low for their meanings or read https://arxiv.org/pdf/2012.05481.pdf for more details.

Configurable options

$ cd egs/librispeech/ASR
$ ./pruned_transducer_stateless4/train.py --help

shows you the training options that can be passed from the commandline. The following options are used quite often:

• --exp-dir

The directory to save checkpoints, training logs and tensorboard.

• --full-libri

If it’s True, the training part uses all the training data, i.e., 960 hours. Otherwise, the training part uses only the
subset train-clean-100, which has 100 hours of training data.

Caution: The training set is perturbed by speed with two factors: 0.9 and 1.1. If --full-libri is True,
each epoch actually processes 3x960 == 2880 hours of data.

• --num-epochs

It is the number of epochs to train. For instance, ./pruned_transducer_stateless4/train.py
--num-epochs 30 trains for 30 epochs and generates epoch-1.pt, epoch-2.pt, . . . , epoch-30.pt in the
folder ./pruned_transducer_stateless4/exp.
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• --start-epoch

It’s used to resume training. ./pruned_transducer_stateless4/train.py --start-epoch 10 loads the
checkpoint ./pruned_transducer_stateless4/exp/epoch-9.pt and starts training from epoch 10, based
on the state from epoch 9.

• --world-size

It is used for multi-GPU single-machine DDP training.

– (a) If it is 1, then no DDP training is used.

– (b) If it is 2, then GPU 0 and GPU 1 are used for DDP training.

The following shows some use cases with it.

Use case 1: You have 4 GPUs, but you only want to use GPU 0 and GPU 2 for training. You can do
the following:

$ cd egs/librispeech/ASR
$ export CUDA_VISIBLE_DEVICES="0,2"
$ ./pruned_transducer_stateless4/train.py --world-size 2

Use case 2: You have 4 GPUs and you want to use all of them for training. You can do the following:

$ cd egs/librispeech/ASR
$ ./pruned_transducer_stateless4/train.py --world-size 4

Use case 3: You have 4 GPUs but you only want to use GPU 3 for training. You can do the following:

$ cd egs/librispeech/ASR
$ export CUDA_VISIBLE_DEVICES="3"
$ ./pruned_transducer_stateless4/train.py --world-size 1

Caution: Only multi-GPU single-machine DDP training is implemented at present. Multi-GPU multi-
machine DDP training will be added later.

• --max-duration

It specifies the number of seconds over all utterances in a batch, before padding. If you encounter CUDA OOM,
please reduce it.

Hint: Due to padding, the number of seconds of all utterances in a batch will usually be larger than
--max-duration.

A larger value for --max-duration may cause OOM during training, while a smaller value may increase the
training time. You have to tune it.

• --use-fp16

If it is True, the model will train with half precision, from our experiment results, by using half precision you
can train with two times larger --max-duration so as to get almost 2X speed up.

• --dynamic-chunk-training

The flag that indicates whether to train a streaming model or not, it MUST be True if you want to train a streaming
model.
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• --short-chunk-size

When training a streaming attention model with chunk masking, the chunk size would be either max sequence
length of current batch or uniformly sampled from (1, short_chunk_size). The default value is 25, you don’t have
to change it most of the time.

• --num-left-chunks

It indicates how many left context (in chunks) that can be seen when calculating attention. The default value is
4, you don’t have to change it most of the time.

• --causal-convolution

Whether to use causal convolution in conformer encoder layer, this requires to be True when training a streaming
model.

Pre-configured options

There are some training options, e.g., number of encoder layers, encoder dimension, decoder dimension, number of
warmup steps etc, that are not passed from the commandline. They are pre-configured by the function get_params()
in pruned_transducer_stateless4/train.py

You don’t need to change these pre-configured parameters. If you really need to change them, please modify ./
pruned_transducer_stateless4/train.py directly.

Note: The options for pruned_transducer_stateless5 are a little different from other recipes. It allows you to config-
ure --num-encoder-layers, --dim-feedforward, --nhead, --encoder-dim, --decoder-dim, --joiner-dim
from commandline, so that you can train models with different size with pruned_transducer_stateless5.

Training logs

Training logs and checkpoints are saved in --exp-dir (e.g. pruned_transducer_stateless4/exp. You will find
the following files in that directory:

• epoch-1.pt, epoch-2.pt, . . .

These are checkpoint files saved at the end of each epoch, containing model state_dict and opti-
mizer state_dict. To resume training from some checkpoint, say epoch-10.pt, you can use:

$ ./pruned_transducer_stateless4/train.py --start-epoch 11

• checkpoint-436000.pt, checkpoint-438000.pt, . . .

These are checkpoint files saved every --save-every-n batches, containing model state_dict
and optimizer state_dict. To resume training from some checkpoint, say checkpoint-436000,
you can use:

$ ./pruned_transducer_stateless4/train.py --start-batch 436000

• tensorboard/

This folder contains tensorBoard logs. Training loss, validation loss, learning rate, etc, are recorded
in these logs. You can visualize them by:
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$ cd pruned_transducer_stateless4/exp/tensorboard
$ tensorboard dev upload --logdir . --description "pruned␣
→˓transducer training for LibriSpeech with icefall"

It will print something like below:

TensorFlow installation not found - running with reduced feature␣
→˓set.
Upload started and will continue reading any new data as it's added␣
→˓to the logdir.

To stop uploading, press Ctrl-C.

New experiment created. View your TensorBoard at: https://
→˓tensorboard.dev/experiment/97VKXf80Ru61CnP2ALWZZg/

[2022-11-20T15:50:50] Started scanning logdir.
Uploading 4468 scalars...
[2022-11-20T15:53:02] Total uploaded: 210171 scalars, 0 tensors, 0␣
→˓binary objects
Listening for new data in logdir...

Note there is a URL in the above output. Click it and you will see the following screenshot:

Fig. 6.9: TensorBoard screenshot.

Hint: If you don’t have access to google, you can use the following command to view the tensorboard log
locally:
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cd pruned_transducer_stateless4/exp/tensorboard
tensorboard --logdir . --port 6008

It will print the following message:

Serving TensorBoard on localhost; to expose to the network, use a␣
→˓proxy or pass --bind_all
TensorBoard 2.8.0 at http://localhost:6008/ (Press CTRL+C to quit)

Now start your browser and go to http://localhost:6008 to view the tensorboard logs.

• log/log-train-xxxx

It is the detailed training log in text format, same as the one you saw printed to the console during
training.

Usage example

You can use the following command to start the training using 4 GPUs:

export CUDA_VISIBLE_DEVICES="0,1,2,3"
./pruned_transducer_stateless4/train.py \

--world-size 4 \
--dynamic-chunk-training 1 \
--causal-convolution 1 \
--num-epochs 30 \
--start-epoch 1 \
--exp-dir pruned_transducer_stateless4/exp \
--full-libri 1 \
--max-duration 300

Note: Comparing with training a non-streaming model, you only need to add two extra options,
--dynamic-chunk-training 1 and --causal-convolution 1 .

Decoding

The decoding part uses checkpoints saved by the training part, so you have to run the training part first.

Hint: There are two kinds of checkpoints:

• (1) epoch-1.pt, epoch-2.pt, . . . , which are saved at the end of each epoch. You can pass --epoch
to pruned_transducer_stateless4/decode.py to use them.

• (2) checkpoints-436000.pt, epoch-438000.pt, . . . , which are saved every --save-every-n
batches. You can pass --iter to pruned_transducer_stateless4/decode.py to use them.

We suggest that you try both types of checkpoints and choose the one that produces the lowest WERs.
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Tip: To decode a streaming model, you can use either simulate streaming decoding in decode.py or real
streaming decoding in streaming_decode.py, the difference between decode.py and streaming_decode.
py is that, decode.py processes the whole acoustic frames at one time with masking (i.e. same as training), but
streaming_decode.py processes the acoustic frames chunk by chunk (so it can only see limited context).

Note: simulate streaming decoding in decode.py and real streaming decoding in streaming_decode.
py should produce almost the same results given the same --decode-chunk-size and --left-context.

Simulate streaming decoding

$ cd egs/librispeech/ASR
$ ./pruned_transducer_stateless4/decode.py --help

shows the options for decoding. The following options are important for streaming models:

--simulate-streaming

If you want to decode a streaming model with decode.py, you MUST set
--simulate-streaming to True. simulate here means the acoustic frames are not
processed frame by frame (or chunk by chunk), instead, the whole sequence is processed at
one time with masking (the same as training).

--causal-convolution

If True, the convolution module in encoder layers will be causal convolution. This is MUST
be True when decoding with a streaming model.

--decode-chunk-size

For streaming models, we will calculate the chunk-wise attention, --decode-chunk-size in-
dicates the chunk length (in frames after subsampling) for chunk-wise attention. For simulate
streaming decoding the decode-chunk-size is used to generate the attention mask.

--left-context

--left-context indicates how many left context frames (after subsampling) can be seen for
current chunk when calculating chunk-wise attention. Normally, left-context should equal
to decode-chunk-size * num-left-chunks, where num-left-chunks is the option used
to train this model. For simulate streaming decoding the left-context is used to gen-
erate the attention mask.

The following shows two examples (for the two types of checkpoints):

for m in greedy_search fast_beam_search modified_beam_search; do
for epoch in 25 20; do
for avg in 7 5 3 1; do

./pruned_transducer_stateless4/decode.py \
--epoch $epoch \
--avg $avg \
--simulate-streaming 1 \
--causal-convolution 1 \
--decode-chunk-size 16 \
--left-context 64 \

(continues on next page)
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(continued from previous page)

--exp-dir pruned_transducer_stateless4/exp \
--max-duration 600 \
--decoding-method $m

done
done

done

for m in greedy_search fast_beam_search modified_beam_search; do
for iter in 474000; do
for avg in 8 10 12 14 16 18; do

./pruned_transducer_stateless4/decode.py \
--iter $iter \
--avg $avg \
--simulate-streaming 1 \
--causal-convolution 1 \
--decode-chunk-size 16 \
--left-context 64 \
--exp-dir pruned_transducer_stateless4/exp \
--max-duration 600 \
--decoding-method $m

done
done

done

Real streaming decoding

$ cd egs/librispeech/ASR
$ ./pruned_transducer_stateless4/streaming_decode.py --help

shows the options for decoding. The following options are important for streaming models:

--decode-chunk-size

For streaming models, we will calculate the chunk-wise attention, --decode-chunk-size
indicates the chunk length (in frames after subsampling) for chunk-wise attention. For real
streaming decoding, we will process decode-chunk-size acoustic frames at each time.

--left-context

--left-context indicates how many left context frames (after subsampling) can be seen for
current chunk when calculating chunk-wise attention. Normally, left-context should equal
to decode-chunk-size * num-left-chunks, where num-left-chunks is the option used
to train this model.

--num-decode-streams

The number of decoding streams that can be run in parallel (very similar to the bath size).
For real streaming decoding, the batches will be packed dynamically, for example, if the
num-decode-streams equals to 10, then, sequence 1 to 10 will be decoded at first, after a
while, suppose sequence 1 and 2 are done, so, sequence 3 to 12 will be processed parallelly in
a batch.

Note: We also try adding --right-context in the real streaming decoding, but it seems not to benefit the per-
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formance for all the models, the reasons might be the training and decoding mismatch. You can try decoding with
--right-context to see if it helps. The default value is 0.

The following shows two examples (for the two types of checkpoints):

for m in greedy_search fast_beam_search modified_beam_search; do
for epoch in 25 20; do
for avg in 7 5 3 1; do

./pruned_transducer_stateless4/decode.py \
--epoch $epoch \
--avg $avg \
--decode-chunk-size 16 \
--left-context 64 \
--num-decode-streams 100 \
--exp-dir pruned_transducer_stateless4/exp \
--max-duration 600 \
--decoding-method $m

done
done

done

for m in greedy_search fast_beam_search modified_beam_search; do
for iter in 474000; do
for avg in 8 10 12 14 16 18; do

./pruned_transducer_stateless4/decode.py \
--iter $iter \
--avg $avg \
--decode-chunk-size 16 \
--left-context 64 \
--num-decode-streams 100 \
--exp-dir pruned_transducer_stateless4/exp \
--max-duration 600 \
--decoding-method $m

done
done

done

Tip: Supporting decoding methods are as follows:

• greedy_search : It takes the symbol with largest posterior probability of each frame as the decoding result.

• beam_search : It implements Algorithm 1 in https://arxiv.org/pdf/1211.3711.pdf and esp-
net/nets/beam_search_transducer.py is used as a reference. Basicly, it keeps topk states for each frame,
and expands the kept states with their own contexts to next frame.

• modified_beam_search : It implements the same algorithm as beam_search above, but it runs in batch mode
with --max-sym-per-frame=1 being hardcoded.

• fast_beam_search : It implements graph composition between the output log_probs and given FSAs. It is
hard to describe the details in several lines of texts, you can read our paper in https://arxiv.org/pdf/2211.00484.pdf
or our rnnt decode code in k2. fast_beam_search can decode with FSAs on GPU efficiently.

• fast_beam_search_LG : The same as fast_beam_search above, fast_beam_search uses an trivial graph
that has only one state, while fast_beam_search_LG uses an LG graph (with N-gram LM).
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• fast_beam_search_nbest : It produces the decoding results as follows:

– (1) Use fast_beam_search to get a lattice

– (2) Select num_paths paths from the lattice using k2.random_paths()

– (3) Unique the selected paths

– (4) Intersect the selected paths with the lattice and compute the shortest path from the intersection result

– (5) The path with the largest score is used as the decoding output.

• fast_beam_search_nbest_LG : It implements same logic as fast_beam_search_nbest, the only difference
is that it uses fast_beam_search_LG to generate the lattice.

Note: The supporting decoding methods in streaming_decode.py might be less than that in decode.py, if needed,
you can implement them by yourself or file a issue in icefall .

Export Model

pruned_transducer_stateless4/export.py supports exporting checkpoints from pruned_transducer_stateless4/
exp in the following ways.

Export model.state_dict()

Checkpoints saved by pruned_transducer_stateless4/train.py also include optimizer.state_dict(). It
is useful for resuming training. But after training, we are interested only in model.state_dict(). You can use the
following command to extract model.state_dict().

# Assume that --epoch 25 --avg 3 produces the smallest WER
# (You can get such information after running ./pruned_transducer_stateless4/decode.py)

epoch=25
avg=3

./pruned_transducer_stateless4/export.py \
--exp-dir ./pruned_transducer_stateless4/exp \
--streaming-model 1 \
--causal-convolution 1 \
--bpe-model data/lang_bpe_500/bpe.model \
--epoch $epoch \
--avg $avg

Caution: --streaming-model and --causal-convolution require to be True to export a streaming mdoel.

It will generate a file ./pruned_transducer_stateless4/exp/pretrained.pt.

Hint: To use the generated pretrained.pt for pruned_transducer_stateless4/decode.py, you can run:
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cd pruned_transducer_stateless4/exp
ln -s pretrained.pt epoch-999.pt

And then pass --epoch 999 --avg 1 --use-averaged-model 0 to ./pruned_transducer_stateless4/
decode.py.

To use the exported model with ./pruned_transducer_stateless4/pretrained.py, you can run:

./pruned_transducer_stateless4/pretrained.py \
--checkpoint ./pruned_transducer_stateless4/exp/pretrained.pt \
--simulate-streaming 1 \
--causal-convolution 1 \
--bpe-model ./data/lang_bpe_500/bpe.model \
--method greedy_search \
/path/to/foo.wav \
/path/to/bar.wav

Export model using torch.jit.script()

./pruned_transducer_stateless4/export.py \
--exp-dir ./pruned_transducer_stateless4/exp \
--streaming-model 1 \
--causal-convolution 1 \
--bpe-model data/lang_bpe_500/bpe.model \
--epoch 25 \
--avg 3 \
--jit 1

Caution: --streaming-model and --causal-convolution require to be True to export a streaming mdoel.

It will generate a file cpu_jit.pt in the given exp_dir. You can later load it by torch.jit.load("cpu_jit.pt").

Note cpu in the name cpu_jit.pt means the parameters when loaded into Python are on CPU. You can use
to("cuda") to move them to a CUDA device.

Note: You will need this cpu_jit.pt when deploying with Sherpa framework.

Download pretrained models

If you don’t want to train from scratch, you can download the pretrained models by visiting the following links:

• pruned_transducer_stateless

• pruned_transducer_stateless2

• pruned_transducer_stateless4

• pruned_transducer_stateless5
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See https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/RESULTS.md for the details of
the above pretrained models

Deploy with Sherpa

Please see https://k2-fsa.github.io/sherpa/python/streaming_asr/conformer/index.html# for how to deploy the models
in sherpa.

LSTM Transducer

Hint: Please scroll down to the bottom of this page to find download links for pretrained models if you don’t want to
train a model from scratch.

This tutorial shows you how to train an LSTM transducer model with the LibriSpeech dataset.

We use pruned RNN-T to compute the loss.

Note: You can find the paper about pruned RNN-T at the following address:

https://arxiv.org/abs/2206.13236

The transducer model consists of 3 parts:

• Encoder, a.k.a, the transcription network. We use an LSTM model

• Decoder, a.k.a, the prediction network. We use a stateless model consisting of nn.Embedding and nn.Conv1d

• Joiner, a.k.a, the joint network.

Caution: Contrary to the conventional RNN-T models, we use a stateless decoder. That is, it has no recurrent
connections.

Hint: Since the encoder model is an LSTM, not Transformer/Conformer, the resulting model is suitable for stream-
ing/online ASR.

Which model to use

Currently, there are two folders about LSTM stateless transducer training:

• (1) https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/lstm_transducer_stateless

This recipe uses only LibriSpeech during training.

• (2) https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/lstm_transducer_stateless2

This recipe uses GigaSpeech + LibriSpeech during training.

(1) and (2) use the same model architecture. The only difference is that (2) supports multi-dataset. Since (2) uses
more data, it has a lower WER than (1) but it needs more training time.

We use lstm_transducer_stateless2 as an example below.
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Note: You need to download the GigaSpeech dataset to run (2). If you have only LibriSpeech dataset available,
feel free to use (1).

Data preparation

$ cd egs/librispeech/ASR
$ ./prepare.sh

# If you use (1), you can **skip** the following command
$ ./prepare_giga_speech.sh

The script ./prepare.sh handles the data preparation for you, automagically. All you need to do is to run it.

Note: We encourage you to read ./prepare.sh.

The data preparation contains several stages. You can use the following two options:

• --stage

• --stop-stage

to control which stage(s) should be run. By default, all stages are executed.

For example,

$ cd egs/librispeech/ASR
$ ./prepare.sh --stage 0 --stop-stage 0

means to run only stage 0.

To run stage 2 to stage 5, use:

$ ./prepare.sh --stage 2 --stop-stage 5

Hint: If you have pre-downloaded the LibriSpeech dataset and the musan dataset, say, they are saved in /tmp/
LibriSpeech and /tmp/musan, you can modify the dl_dir variable in ./prepare.sh to point to /tmp so that
./prepare.sh won’t re-download them.

Note: All generated files by ./prepare.sh, e.g., features, lexicon, etc, are saved in ./data directory.

We provide the following YouTube video showing how to run ./prepare.sh.

Note: To get the latest news of next-gen Kaldi, please subscribe the following YouTube channel by Nadira Povey:

https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw

https://youtu.be/ofEIoJL-mGM
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Training

Configurable options

$ cd egs/librispeech/ASR
$ ./lstm_transducer_stateless2/train.py --help

shows you the training options that can be passed from the commandline. The following options are used quite often:

• --full-libri

If it’s True, the training part uses all the training data, i.e., 960 hours. Otherwise, the training part uses only the
subset train-clean-100, which has 100 hours of training data.

Caution: The training set is perturbed by speed with two factors: 0.9 and 1.1. If --full-libri is True,
each epoch actually processes 3x960 == 2880 hours of data.

• --num-epochs

It is the number of epochs to train. For instance, ./lstm_transducer_stateless2/train.py
--num-epochs 30 trains for 30 epochs and generates epoch-1.pt, epoch-2.pt, . . . , epoch-30.pt in the
folder ./lstm_transducer_stateless2/exp.

• --start-epoch

It’s used to resume training. ./lstm_transducer_stateless2/train.py --start-epoch 10 loads the
checkpoint ./lstm_transducer_stateless2/exp/epoch-9.pt and starts training from epoch 10, based on
the state from epoch 9.

• --world-size

It is used for multi-GPU single-machine DDP training.

– (a) If it is 1, then no DDP training is used.

– (b) If it is 2, then GPU 0 and GPU 1 are used for DDP training.

The following shows some use cases with it.

Use case 1: You have 4 GPUs, but you only want to use GPU 0 and GPU 2 for training. You can do
the following:

$ cd egs/librispeech/ASR
$ export CUDA_VISIBLE_DEVICES="0,2"
$ ./lstm_transducer_stateless2/train.py --world-size 2

Use case 2: You have 4 GPUs and you want to use all of them for training. You can do the following:

$ cd egs/librispeech/ASR
$ ./lstm_transducer_stateless2/train.py --world-size 4

Use case 3: You have 4 GPUs but you only want to use GPU 3 for training. You can do the following:

$ cd egs/librispeech/ASR
$ export CUDA_VISIBLE_DEVICES="3"
$ ./lstm_transducer_stateless2/train.py --world-size 1
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Caution: Only multi-GPU single-machine DDP training is implemented at present. Multi-GPU multi-
machine DDP training will be added later.

• --max-duration

It specifies the number of seconds over all utterances in a batch, before padding. If you encounter CUDA OOM,
please reduce it.

Hint: Due to padding, the number of seconds of all utterances in a batch will usually be larger than
--max-duration.

A larger value for --max-duration may cause OOM during training, while a smaller value may increase the
training time. You have to tune it.

• --giga-prob

The probability to select a batch from the GigaSpeech dataset. Note: It is available only for (2).

Pre-configured options

There are some training options, e.g., weight decay, number of warmup steps, results dir, etc, that are not passed from
the commandline. They are pre-configured by the function get_params() in lstm_transducer_stateless2/train.py

You don’t need to change these pre-configured parameters. If you really need to change them, please modify ./
lstm_transducer_stateless2/train.py directly.

Training logs

Training logs and checkpoints are saved in lstm_transducer_stateless2/exp. You will find the following files in
that directory:

• epoch-1.pt, epoch-2.pt, . . .

These are checkpoint files saved at the end of each epoch, containing model state_dict and opti-
mizer state_dict. To resume training from some checkpoint, say epoch-10.pt, you can use:

$ ./lstm_transducer_stateless2/train.py --start-epoch 11

• checkpoint-436000.pt, checkpoint-438000.pt, . . .

These are checkpoint files saved every --save-every-n batches, containing model state_dict
and optimizer state_dict. To resume training from some checkpoint, say checkpoint-436000,
you can use:

$ ./lstm_transducer_stateless2/train.py --start-batch 436000

• tensorboard/

This folder contains tensorBoard logs. Training loss, validation loss, learning rate, etc, are recorded
in these logs. You can visualize them by:

$ cd lstm_transducer_stateless2/exp/tensorboard
$ tensorboard dev upload --logdir . --description "LSTM transducer␣
→˓training for LibriSpeech with icefall"
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It will print something like below:

TensorFlow installation not found - running with reduced feature␣
→˓set.
Upload started and will continue reading any new data as it's added␣
→˓to the logdir.

To stop uploading, press Ctrl-C.

New experiment created. View your TensorBoard at: https://
→˓tensorboard.dev/experiment/cj2vtPiwQHKN9Q1tx6PTpg/

[2022-09-20T15:50:50] Started scanning logdir.
Uploading 4468 scalars...
[2022-09-20T15:53:02] Total uploaded: 210171 scalars, 0 tensors, 0␣
→˓binary objects
Listening for new data in logdir...

Note there is a URL in the above output. Click it and you will see the following screenshot:

Fig. 6.10: TensorBoard screenshot.

Hint: If you don’t have access to google, you can use the following command to view the tensorboard log
locally:
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cd lstm_transducer_stateless2/exp/tensorboard
tensorboard --logdir . --port 6008

It will print the following message:

Serving TensorBoard on localhost; to expose to the network, use a␣
→˓proxy or pass --bind_all
TensorBoard 2.8.0 at http://localhost:6008/ (Press CTRL+C to quit)

Now start your browser and go to http://localhost:6008 to view the tensorboard logs.

• log/log-train-xxxx

It is the detailed training log in text format, same as the one you saw printed to the console during
training.

Usage example

You can use the following command to start the training using 8 GPUs:

export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
./lstm_transducer_stateless2/train.py \
--world-size 8 \
--num-epochs 35 \
--start-epoch 1 \
--full-libri 1 \
--exp-dir lstm_transducer_stateless2/exp \
--max-duration 500 \
--use-fp16 0 \
--lr-epochs 10 \
--num-workers 2 \
--giga-prob 0.9

Decoding

The decoding part uses checkpoints saved by the training part, so you have to run the training part first.

Hint: There are two kinds of checkpoints:

• (1) epoch-1.pt, epoch-2.pt, . . . , which are saved at the end of each epoch. You can pass --epoch
to lstm_transducer_stateless2/decode.py to use them.

• (2) checkpoints-436000.pt, epoch-438000.pt, . . . , which are saved every --save-every-n
batches. You can pass --iter to lstm_transducer_stateless2/decode.py to use them.

We suggest that you try both types of checkpoints and choose the one that produces the lowest WERs.

$ cd egs/librispeech/ASR
$ ./lstm_transducer_stateless2/decode.py --help
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shows the options for decoding.

The following shows two examples:

for m in greedy_search fast_beam_search modified_beam_search; do
for epoch in 17; do
for avg in 1 2; do

./lstm_transducer_stateless2/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir lstm_transducer_stateless2/exp \
--max-duration 600 \
--num-encoder-layers 12 \
--rnn-hidden-size 1024 \
--decoding-method $m \
--use-averaged-model True \
--beam 4 \
--max-contexts 4 \
--max-states 8 \
--beam-size 4

done
done

done

for m in greedy_search fast_beam_search modified_beam_search; do
for iter in 474000; do
for avg in 8 10 12 14 16 18; do

./lstm_transducer_stateless2/decode.py \
--iter $iter \
--avg $avg \
--exp-dir lstm_transducer_stateless2/exp \
--max-duration 600 \
--num-encoder-layers 12 \
--rnn-hidden-size 1024 \
--decoding-method $m \
--use-averaged-model True \
--beam 4 \
--max-contexts 4 \
--max-states 8 \
--beam-size 4

done
done

done
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Export models

lstm_transducer_stateless2/export.py supports exporting checkpoints from lstm_transducer_stateless2/exp in
the following ways.

Export model.state_dict()

Checkpoints saved by lstm_transducer_stateless2/train.py also include optimizer.state_dict(). It is
useful for resuming training. But after training, we are interested only in model.state_dict(). You can use the
following command to extract model.state_dict().

# Assume that --iter 468000 --avg 16 produces the smallest WER
# (You can get such information after running ./lstm_transducer_stateless2/decode.py)

iter=468000
avg=16

./lstm_transducer_stateless2/export.py \
--exp-dir ./lstm_transducer_stateless2/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--iter $iter \
--avg $avg

It will generate a file ./lstm_transducer_stateless2/exp/pretrained.pt.

Hint: To use the generated pretrained.pt for lstm_transducer_stateless2/decode.py, you can run:

cd lstm_transducer_stateless2/exp
ln -s pretrained epoch-9999.pt

And then pass --epoch 9999 --avg 1 --use-averaged-model 0 to ./lstm_transducer_stateless2/
decode.py.

To use the exported model with ./lstm_transducer_stateless2/pretrained.py, you can run:

./lstm_transducer_stateless2/pretrained.py \
--checkpoint ./lstm_transducer_stateless2/exp/pretrained.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
--method greedy_search \
/path/to/foo.wav \
/path/to/bar.wav
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Export model using torch.jit.trace()

iter=468000
avg=16

./lstm_transducer_stateless2/export.py \
--exp-dir ./lstm_transducer_stateless2/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--iter $iter \
--avg $avg \
--jit-trace 1

It will generate 3 files:

• ./lstm_transducer_stateless2/exp/encoder_jit_trace.pt

• ./lstm_transducer_stateless2/exp/decoder_jit_trace.pt

• ./lstm_transducer_stateless2/exp/joiner_jit_trace.pt

To use the generated files with ./lstm_transducer_stateless2/jit_pretrained:

./lstm_transducer_stateless2/jit_pretrained.py \
--bpe-model ./data/lang_bpe_500/bpe.model \
--encoder-model-filename ./lstm_transducer_stateless2/exp/encoder_jit_trace.pt \
--decoder-model-filename ./lstm_transducer_stateless2/exp/decoder_jit_trace.pt \
--joiner-model-filename ./lstm_transducer_stateless2/exp/joiner_jit_trace.pt \
/path/to/foo.wav \
/path/to/bar.wav

Hint: Please see https://k2-fsa.github.io/sherpa/python/streaming_asr/lstm/english/server.html for how to use the
exported models in sherpa.

Download pretrained models

If you don’t want to train from scratch, you can download the pretrained models by visiting the following links:

• https://huggingface.co/csukuangfj/icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03

• https://huggingface.co/Zengwei/icefall-asr-librispeech-lstm-transducer-stateless-2022-08-18

See https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/RESULTS.md for the details of
the above pretrained models

You can find more usages of the pretrained models in https://k2-fsa.github.io/sherpa/python/streaming_asr/lstm/index.
html
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Zipformer Transducer

This tutorial shows you how to run a streaming zipformer transducer model with the LibriSpeech dataset.

Note: The tutorial is suitable for pruned_transducer_stateless7_streaming,

Hint: We assume you have read the page Installation and have setup the environment for icefall.

Hint: We recommend you to use a GPU or several GPUs to run this recipe.

Hint: Please scroll down to the bottom of this page to find download links for pretrained models if you don’t want to
train a model from scratch.

We use pruned RNN-T to compute the loss.

Note: You can find the paper about pruned RNN-T at the following address:

https://arxiv.org/abs/2206.13236

The transducer model consists of 3 parts:

• Encoder, a.k.a, the transcription network. We use a Zipformer model (proposed by Daniel Povey)

• Decoder, a.k.a, the prediction network. We use a stateless model consisting of nn.Embedding and nn.Conv1d

• Joiner, a.k.a, the joint network.

Caution: Contrary to the conventional RNN-T models, we use a stateless decoder. That is, it has no recurrent
connections.

Data preparation

Hint: The data preparation is the same as other recipes on LibriSpeech dataset, if you have finished this step, you can
skip to Training directly.

$ cd egs/librispeech/ASR
$ ./prepare.sh

The script ./prepare.sh handles the data preparation for you, automagically. All you need to do is to run it.

The data preparation contains several stages, you can use the following two options:

• --stage

• --stop-stage
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to control which stage(s) should be run. By default, all stages are executed.

For example,

$ cd egs/librispeech/ASR
$ ./prepare.sh --stage 0 --stop-stage 0

means to run only stage 0.

To run stage 2 to stage 5, use:

$ ./prepare.sh --stage 2 --stop-stage 5

Hint: If you have pre-downloaded the LibriSpeech dataset and the musan dataset, say, they are saved in /tmp/
LibriSpeech and /tmp/musan, you can modify the dl_dir variable in ./prepare.sh to point to /tmp so that
./prepare.sh won’t re-download them.

Note: All generated files by ./prepare.sh, e.g., features, lexicon, etc, are saved in ./data directory.

We provide the following YouTube video showing how to run ./prepare.sh.

Note: To get the latest news of next-gen Kaldi, please subscribe the following YouTube channel by Nadira Povey:

https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw

https://youtu.be/ofEIoJL-mGM

Training

Configurable options

$ cd egs/librispeech/ASR
$ ./pruned_transducer_stateless7_streaming/train.py --help

shows you the training options that can be passed from the commandline. The following options are used quite often:

• --exp-dir

The directory to save checkpoints, training logs and tensorboard.

• --full-libri

If it’s True, the training part uses all the training data, i.e., 960 hours. Otherwise, the training part uses only the
subset train-clean-100, which has 100 hours of training data.

Caution: The training set is perturbed by speed with two factors: 0.9 and 1.1. If --full-libri is True,
each epoch actually processes 3x960 == 2880 hours of data.

• --num-epochs
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It is the number of epochs to train. For instance, ./pruned_transducer_stateless7_streaming/train.
py --num-epochs 30 trains for 30 epochs and generates epoch-1.pt, epoch-2.pt, . . . , epoch-30.pt in the
folder ./pruned_transducer_stateless7_streaming/exp.

• --start-epoch

It’s used to resume training. ./pruned_transducer_stateless7_streaming/train.py --start-epoch
10 loads the checkpoint ./pruned_transducer_stateless7_streaming/exp/epoch-9.pt and starts
training from epoch 10, based on the state from epoch 9.

• --world-size

It is used for multi-GPU single-machine DDP training.

– (a) If it is 1, then no DDP training is used.

– (b) If it is 2, then GPU 0 and GPU 1 are used for DDP training.

The following shows some use cases with it.

Use case 1: You have 4 GPUs, but you only want to use GPU 0 and GPU 2 for training. You can do
the following:

$ cd egs/librispeech/ASR
$ export CUDA_VISIBLE_DEVICES="0,2"
$ ./pruned_transducer_stateless7_streaming/train.py --world-size 2

Use case 2: You have 4 GPUs and you want to use all of them for training. You can do the following:

$ cd egs/librispeech/ASR
$ ./pruned_transducer_stateless7_streaming/train.py --world-size 4

Use case 3: You have 4 GPUs but you only want to use GPU 3 for training. You can do the following:

$ cd egs/librispeech/ASR
$ export CUDA_VISIBLE_DEVICES="3"
$ ./pruned_transducer_stateless7_streaming/train.py --world-size 1

Caution: Only multi-GPU single-machine DDP training is implemented at present. Multi-GPU multi-
machine DDP training will be added later.

• --max-duration

It specifies the number of seconds over all utterances in a batch, before padding. If you encounter CUDA OOM,
please reduce it.

Hint: Due to padding, the number of seconds of all utterances in a batch will usually be larger than
--max-duration.

A larger value for --max-duration may cause OOM during training, while a smaller value may increase the
training time. You have to tune it.

• --use-fp16

If it is True, the model will train with half precision, from our experiment results, by using half precision you
can train with two times larger --max-duration so as to get almost 2X speed up.

We recommend using --use-fp16 True.
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• --short-chunk-size

When training a streaming attention model with chunk masking, the chunk size would be either max sequence
length of current batch or uniformly sampled from (1, short_chunk_size). The default value is 50, you don’t have
to change it most of the time.

• --num-left-chunks

It indicates how many left context (in chunks) that can be seen when calculating attention. The default value is
4, you don’t have to change it most of the time.

• --decode-chunk-len

The chunk size for decoding (in frames before subsampling). It is used for validation. The default value is 32
(i.e., 320ms).

Pre-configured options

There are some training options, e.g., number of encoder layers, encoder dimension, decoder dimension, number of
warmup steps etc, that are not passed from the commandline. They are pre-configured by the function get_params()
in pruned_transducer_stateless7_streaming/train.py

You don’t need to change these pre-configured parameters. If you really need to change them, please modify ./
pruned_transducer_stateless7_streaming/train.py directly.

Training logs

Training logs and checkpoints are saved in --exp-dir (e.g. pruned_transducer_stateless7_streaming/exp.
You will find the following files in that directory:

• epoch-1.pt, epoch-2.pt, . . .

These are checkpoint files saved at the end of each epoch, containing model state_dict and opti-
mizer state_dict. To resume training from some checkpoint, say epoch-10.pt, you can use:

$ ./pruned_transducer_stateless7_streaming/train.py --start-epoch 11

• checkpoint-436000.pt, checkpoint-438000.pt, . . .

These are checkpoint files saved every --save-every-n batches, containing model state_dict
and optimizer state_dict. To resume training from some checkpoint, say checkpoint-436000,
you can use:

$ ./pruned_transducer_stateless7_streaming/train.py --start-batch␣
→˓436000

• tensorboard/

This folder contains tensorBoard logs. Training loss, validation loss, learning rate, etc, are recorded
in these logs. You can visualize them by:

$ cd pruned_transducer_stateless7_streaming/exp/tensorboard
$ tensorboard dev upload --logdir . --description "pruned␣
→˓transducer training for LibriSpeech with icefall"

Hint: If you don’t have access to google, you can use the following command to view the tensorboard log
locally:
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cd pruned_transducer_stateless7_streaming/exp/tensorboard
tensorboard --logdir . --port 6008

It will print the following message:

Serving TensorBoard on localhost; to expose to the network, use a␣
→˓proxy or pass --bind_all
TensorBoard 2.8.0 at http://localhost:6008/ (Press CTRL+C to quit)

Now start your browser and go to http://localhost:6008 to view the tensorboard logs.

• log/log-train-xxxx

It is the detailed training log in text format, same as the one you saw printed to the console during
training.

Usage example

You can use the following command to start the training using 4 GPUs:

export CUDA_VISIBLE_DEVICES="0,1,2,3"
./pruned_transducer_stateless7_streaming/train.py \

--world-size 4 \
--num-epochs 30 \
--start-epoch 1 \
--use-fp16 1 \
--exp-dir pruned_transducer_stateless7_streaming/exp \
--full-libri 1 \
--max-duration 550

Decoding

The decoding part uses checkpoints saved by the training part, so you have to run the training part first.

Hint: There are two kinds of checkpoints:

• (1) epoch-1.pt, epoch-2.pt, . . . , which are saved at the end of each epoch. You can pass --epoch
to pruned_transducer_stateless7_streaming/decode.py to use them.

• (2) checkpoints-436000.pt, epoch-438000.pt, . . . , which are saved every --save-every-n
batches. You can pass --iter to pruned_transducer_stateless7_streaming/decode.py to
use them.

We suggest that you try both types of checkpoints and choose the one that produces the lowest WERs.

Tip: To decode a streaming model, you can use either simulate streaming decoding in decode.py or
real chunk-wise streaming decoding in streaming_decode.py. The difference between decode.py and
streaming_decode.py is that, decode.py processes the whole acoustic frames at one time with masking (i.e. same
as training), but streaming_decode.py processes the acoustic frames chunk by chunk.
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Note: simulate streaming decoding in decode.py and real chunk-size streaming decoding in
streaming_decode.py should produce almost the same results given the same --decode-chunk-len.

Simulate streaming decoding

$ cd egs/librispeech/ASR
$ ./pruned_transducer_stateless7_streaming/decode.py --help

shows the options for decoding. The following options are important for streaming models:

--decode-chunk-len

It is same as in train.py, which specifies the chunk size for decoding (in frames before sub-
sampling). The default value is 32 (i.e., 320ms).

The following shows two examples (for the two types of checkpoints):

for m in greedy_search fast_beam_search modified_beam_search; do
for epoch in 30; do
for avg in 12 11 10 9 8; do

./pruned_transducer_stateless7_streaming/decode.py \
--epoch $epoch \
--avg $avg \
--decode-chunk-len 32 \
--exp-dir pruned_transducer_stateless7_streaming/exp \
--max-duration 600 \
--decoding-method $m

done
done

done

for m in greedy_search fast_beam_search modified_beam_search; do
for iter in 474000; do
for avg in 8 10 12 14 16 18; do

./pruned_transducer_stateless7_streaming/decode.py \
--iter $iter \
--avg $avg \
--decode-chunk-len 32 \
--exp-dir pruned_transducer_stateless7_streaming/exp \
--max-duration 600 \
--decoding-method $m

done
done

done
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Real streaming decoding

$ cd egs/librispeech/ASR
$ ./pruned_transducer_stateless7_streaming/streaming_decode.py --help

shows the options for decoding. The following options are important for streaming models:

--decode-chunk-len

It is same as in train.py, which specifies the chunk size for decoding (in frames before sub-
sampling). The default value is 32 (i.e., 320ms). For real streaming decoding, we will
process decode-chunk-len acoustic frames at each time.

--num-decode-streams

The number of decoding streams that can be run in parallel (very similar to the bath size).
For real streaming decoding, the batches will be packed dynamically, for example, if the
num-decode-streams equals to 10, then, sequence 1 to 10 will be decoded at first, after a
while, suppose sequence 1 and 2 are done, so, sequence 3 to 12 will be processed parallelly in
a batch.

The following shows two examples (for the two types of checkpoints):

for m in greedy_search fast_beam_search modified_beam_search; do
for epoch in 30; do
for avg in 12 11 10 9 8; do

./pruned_transducer_stateless7_streaming/decode.py \
--epoch $epoch \
--avg $avg \
--decode-chunk-len 32 \
--num-decode-streams 100 \
--exp-dir pruned_transducer_stateless7_streaming/exp \
--decoding-method $m

done
done

done

for m in greedy_search fast_beam_search modified_beam_search; do
for iter in 474000; do
for avg in 8 10 12 14 16 18; do

./pruned_transducer_stateless7_streaming/decode.py \
--iter $iter \
--avg $avg \
--decode-chunk-len 16 \
--num-decode-streams 100 \
--exp-dir pruned_transducer_stateless7_streaming/exp \
--decoding-method $m

done
done

done

Tip: Supporting decoding methods are as follows:

• greedy_search : It takes the symbol with largest posterior probability of each frame as the decoding result.
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• beam_search : It implements Algorithm 1 in https://arxiv.org/pdf/1211.3711.pdf and esp-
net/nets/beam_search_transducer.py is used as a reference. Basicly, it keeps topk states for each frame,
and expands the kept states with their own contexts to next frame.

• modified_beam_search : It implements the same algorithm as beam_search above, but it runs in batch mode
with --max-sym-per-frame=1 being hardcoded.

• fast_beam_search : It implements graph composition between the output log_probs and given FSAs. It is
hard to describe the details in several lines of texts, you can read our paper in https://arxiv.org/pdf/2211.00484.pdf
or our rnnt decode code in k2. fast_beam_search can decode with FSAs on GPU efficiently.

• fast_beam_search_LG : The same as fast_beam_search above, fast_beam_search uses an trivial graph
that has only one state, while fast_beam_search_LG uses an LG graph (with N-gram LM).

• fast_beam_search_nbest : It produces the decoding results as follows:

– (1) Use fast_beam_search to get a lattice

– (2) Select num_paths paths from the lattice using k2.random_paths()

– (3) Unique the selected paths

– (4) Intersect the selected paths with the lattice and compute the shortest path from the intersection result

– (5) The path with the largest score is used as the decoding output.

• fast_beam_search_nbest_LG : It implements same logic as fast_beam_search_nbest, the only difference
is that it uses fast_beam_search_LG to generate the lattice.

Note: The supporting decoding methods in streaming_decode.py might be less than that in decode.py, if needed,
you can implement them by yourself or file a issue in icefall .

Export Model

Currently it supports exporting checkpoints from pruned_transducer_stateless7_streaming/exp in the follow-
ing ways.

Export model.state_dict()

Checkpoints saved by pruned_transducer_stateless7_streaming/train.py also include optimizer.
state_dict(). It is useful for resuming training. But after training, we are interested only in model.state_dict().
You can use the following command to extract model.state_dict().

# Assume that --epoch 30 --avg 9 produces the smallest WER
# (You can get such information after running ./pruned_transducer_stateless7_streaming/
→˓decode.py)

epoch=30
avg=9

./pruned_transducer_stateless7_streaming/export.py \
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--epoch $epoch \

(continues on next page)
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(continued from previous page)

--avg $avg \
--use-averaged-model=True \
--decode-chunk-len 32

It will generate a file ./pruned_transducer_stateless7_streaming/exp/pretrained.pt.

Hint: To use the generated pretrained.pt for pruned_transducer_stateless7_streaming/decode.py, you
can run:

cd pruned_transducer_stateless7_streaming/exp
ln -s pretrained.pt epoch-999.pt

And then pass --epoch 999 --avg 1 --use-averaged-model 0 to ./pruned_transducer_stateless7_streaming/
decode.py.

To use the exported model with ./pruned_transducer_stateless7_streaming/pretrained.py, you can run:

./pruned_transducer_stateless7_streaming/pretrained.py \
--checkpoint ./pruned_transducer_stateless7_streaming/exp/pretrained.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
--method greedy_search \
--decode-chunk-len 32 \
/path/to/foo.wav \
/path/to/bar.wav

Export model using torch.jit.script()

./pruned_transducer_stateless7_streaming/export.py \
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--epoch 30 \
--avg 9 \
--decode-chunk-len 32 \
--jit 1

Caution: --decode-chunk-len is required to export a ScriptModule.

It will generate a file cpu_jit.pt in the given exp_dir. You can later load it by torch.jit.load("cpu_jit.pt").

Note cpu in the name cpu_jit.pt means the parameters when loaded into Python are on CPU. You can use
to("cuda") to move them to a CUDA device.
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Export model using torch.jit.trace()

epoch=30
avg=9

./pruned_transducer_stateless7_streaming/jit_trace_export.py \
--bpe-model data/lang_bpe_500/bpe.model \
--use-averaged-model=True \
--decode-chunk-len 32 \
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
--epoch $epoch \
--avg $avg

Caution: --decode-chunk-len is required to export a ScriptModule.

It will generate 3 files:

• ./pruned_transducer_stateless7_streaming/exp/encoder_jit_trace.pt

• ./pruned_transducer_stateless7_streaming/exp/decoder_jit_trace.pt

• ./pruned_transducer_stateless7_streaming/exp/joiner_jit_trace.pt

To use the generated files with ./pruned_transducer_stateless7_streaming/jit_trace_pretrained.py:

./pruned_transducer_stateless7_streaming/jit_trace_pretrained.py \
--encoder-model-filename ./pruned_transducer_stateless7_streaming/exp/encoder_jit_

→˓trace.pt \
--decoder-model-filename ./pruned_transducer_stateless7_streaming/exp/decoder_jit_

→˓trace.pt \
--joiner-model-filename ./pruned_transducer_stateless7_streaming/exp/joiner_jit_trace.

→˓pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
--decode-chunk-len 32 \
/path/to/foo.wav

Download pretrained models

If you don’t want to train from scratch, you can download the pretrained models by visiting the following links:

• pruned_transducer_stateless7_streaming

See https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/RESULTS.md for the details of
the above pretrained models
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Deploy with Sherpa

Please see https://k2-fsa.github.io/sherpa/python/streaming_asr/conformer/index.html# for how to deploy the models
in sherpa.

6.3 RNN-LM

6.3.1 Train an RNN langugage model

If you have enough text data, you can train a neural network language model (NNLM) to improve the WER of your
E2E ASR system. This tutorial shows you how to train an RNNLM from scratch.

Hint: For how to use an NNLM during decoding, please refer to the following tutorials: Shallow fusion for Transducer,
LODR for RNN Transducer, LM rescoring for Transducer

Note: This tutorial is based on the LibriSpeech recipe. Please check it out for the necessary python scripts for this
tutorial. We use the LibriSpeech LM-corpus as the LM training set for illustration purpose. You can also collect your
own data. The data format is quite simple: each line should contain a complete sentence, and words should be separated
by space.

First, let’s download the training data for the RNNLM. This can be done via the following command:

$ wget https://www.openslr.org/resources/11/librispeech-lm-norm.txt.gz
$ gzip -d librispeech-lm-norm.txt.gz

As we are training a BPE-level RNNLM, we need to tokenize the training text, which requires a BPE tokenizer. This
can be achieved by executing the following command:

$ # if you don't have the BPE
$ GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/Zengwei/icefall-asr-librispeech-
→˓zipformer-2023-05-15
$ cd icefall-asr-librispeech-zipformer-2023-05-15/data/lang_bpe_500
$ git lfs pull --include bpe.model
$ cd ../../..

$ ./local/prepare_lm_training_data.py \
--bpe-model icefall-asr-librispeech-zipformer-2023-05-15/data/lang_bpe_500/bpe.model␣

→˓\
--lm-data librispeech-lm-norm.txt \
--lm-archive data/lang_bpe_500/lm_data.pt

Now, you should have a file name lm_data.pt file store under the directory data/lang_bpe_500. This is the packed
training data for the RNNLM. We then sort the training data according to its sentence length.

$ # This could take a while (~ 20 minutes), feel free to grab a cup of coffee :)
$ ./local/sort_lm_training_data.py \

--in-lm-data data/lang_bpe_500/lm_data.pt \
--out-lm-data data/lang_bpe_500/sorted_lm_data.pt \
--out-statistics data/lang_bpe_500/lm_data_stats.txt
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The aforementioned steps can be repeated to create a a validation set for you RNNLM. Let’s say you have a val-
idation set in valid.txt, you can just set --lm-data valid.txt and --lm-archive data/lang_bpe_500/
lm-data-valid.pt when calling ./local/prepare_lm_training_data.py.

After completing the previous steps, the training and testing sets for training RNNLM are ready. The next step is to
train the RNNLM model. The training command is as follows:

$ # assume you are in the icefall root directory
$ cd rnn_lm
$ ln -s ../../egs/librispeech/ASR/data .
$ cd ..
$ ./rnn_lm/train.py \

--world-size 4 \
--exp-dir ./rnn_lm/exp \
--start-epoch 0 \
--num-epochs 10 \
--use-fp16 0 \
--tie-weights 1 \
--embedding-dim 2048 \
--hidden_dim 2048 \
--num-layers 3 \
--batch-size 300 \
--lm-data rnn_lm/data/lang_bpe_500/sorted_lm_data.pt \
--lm-data-valid rnn_lm/data/lang_bpe_500/sorted_lm_data.pt

Note: You can adjust the RNNLM hyper parameters to control the size of the RNNLM, such as embedding dimension
and hidden state dimension. For more details, please run ./rnn_lm/train.py --help.

Note: The training of RNNLM can take a long time (usually a couple of days).
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CHAPTER

SEVEN

CONTRIBUTING

Contributions to icefall are very welcomed. There are many possible ways to make contributions and two of them
are:

• To write documentation

• To write code

– (1) To follow the code style in the repository

– (2) To write a new recipe

In this page, we describe how to contribute documentation and code to icefall.

7.1 Contributing to Documentation

We use sphinx for documentation.

Before writing documentation, you have to prepare the environment:

$ cd docs
$ pip install -r requirements.txt

After setting up the environment, you are ready to write documentation. Please refer to reStructuredText Primer if you
are not familiar with reStructuredText.

After writing some documentation, you can build the documentation locally to preview what it looks like if it is pub-
lished:

$ cd docs
$ make html

The generated documentation is in docs/build/html and can be viewed with the following commands:

$ cd docs/build/html
$ python3 -m http.server

It will print:

Serving HTTP on 0.0.0.0 port 8000 (http://0.0.0.0:8000/) ...

Open your browser, go to http://0.0.0.0:8000/, and you will see the following:
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Fig. 7.1: View generated documentation locally with python3 -m http.server.

7.2 Follow the code style

We use the following tools to make the code style to be as consistent as possible:

• black, to format the code

• flake8, to check the style and quality of the code

• isort, to sort imports

The following versions of the above tools are used:

• black == 22.3.0

• flake8 == 5.0.4

• isort == 5.10.1

After running the following commands:

$ git clone https://github.com/k2-fsa/icefall
$ cd icefall
$ pip install pre-commit
$ pre-commit install

it will run the following checks whenever you run git commit, automatically:

If any of the above checks failed, your git commit was not successful. Please fix any issues reported by the check
tools.

Hint: Some of the check tools, i.e., black and isort will modify the files to be commited in-place. So please run
git status after failure to see which file has been modified by the tools before you make any further changes.

After fixing all the failures, run git commit again and it should succeed this time:

240 Chapter 7. Contributing

https://github.com/psf/black
https://github.com/PyCQA/flake8
https://github.com/PyCQA/isort


icefall, Release 0.1

Fig. 7.2: pre-commit hooks invoked by git commit (Failed).

Fig. 7.3: pre-commit hooks invoked by git commit (Succeeded).
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If you want to check the style of your code before git commit, you can do the following:

$ pre-commit install
$ pre-commit run

Or without installing the pre-commit hooks:

$ cd icefall
$ pip install black==22.3.0 flake8==5.0.4 isort==5.10.1
$ black --check your_changed_file.py
$ black your_changed_file.py # modify it in-place
$
$ flake8 your_changed_file.py
$
$ isort --check your_changed_file.py # modify it in-place
$ isort your_changed_file.py

7.3 How to create a recipe

Hint: Please read Follow the code style to adjust your code sytle.

Caution: icefall is designed to be as Pythonic as possible. Please use Python in your recipe if possible.

7.3.1 Data Preparation

We recommend you to prepare your training/test/validate dataset with lhotse.

Please refer to https://lhotse.readthedocs.io/en/latest/index.html for how to create a recipe in lhotse.

Hint: The yesno recipe in lhotse is a very good example.

Please refer to https://github.com/lhotse-speech/lhotse/pull/380, which shows how to add a new recipe to lhotse.

Suppose you would like to add a recipe for a dataset named foo. You can do the following:

$ cd egs
$ mkdir -p foo/ASR
$ cd foo/ASR
$ touch prepare.sh
$ chmod +x prepare.sh

If your dataset is very simple, please follow egs/yesno/ASR/prepare.sh to write your own prepare.sh. Otherwise,
please refer to egs/librispeech/ASR/prepare.sh to prepare your data.
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7.3.2 Training

Assume you have a fancy model, called bar for the foo recipe, you can organize your files in the following way:

$ cd egs/foo/ASR
$ mkdir bar
$ cd bar
$ touch README.md model.py train.py decode.py asr_datamodule.py pretrained.py

For instance , the yesno recipe has a tdnn model and its directory structure looks like the following:

egs/yesno/ASR/tdnn/
|-- README.md
|-- asr_datamodule.py
|-- decode.py
|-- model.py
|-- pretrained.py
`-- train.py

File description:

• README.md

It contains information of this recipe, e.g., how to run it, what the WER is, etc.

• asr_datamodule.py

It provides code to create PyTorch dataloaders with train/test/validation dataset.

• decode.py

It takes as inputs the checkpoints saved during the training stage to decode the test dataset(s).

• model.py

It contains the definition of your fancy neural network model.

• pretrained.py

We can use this script to do inference with a pre-trained model.

• train.py

It contains training code.

Hint: Please take a look at

• egs/yesno/tdnn

• egs/librispeech/tdnn_lstm_ctc

• egs/librispeech/conformer_ctc

to get a feel what the resulting files look like.

Note: Every model in a recipe is kept to be as self-contained as possible. We tolerate duplicate code among different
recipes.

The training stage should be invocable by:
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$ cd egs/foo/ASR
$ ./bar/train.py
$ ./bar/train.py --help

7.3.3 Decoding

Please refer to

• https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/conformer_ctc/decode.py

If your model is transformer/conformer based.

• https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/tdnn_lstm_ctc/decode.py

If your model is TDNN/LSTM based, i.e., there is no attention decoder.

• https://github.com/k2-fsa/icefall/blob/master/egs/yesno/ASR/tdnn/decode.py

If there is no LM rescoring.

The decoding stage should be invocable by:

$ cd egs/foo/ASR
$ ./bar/decode.py
$ ./bar/decode.py --help

7.3.4 Pre-trained model

Please demonstrate how to use your model for inference in egs/foo/ASR/bar/pretrained.py. If possible, please
consider creating a Colab notebook to show that.

244 Chapter 7. Contributing

https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/conformer_ctc/decode.py
https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/tdnn_lstm_ctc/decode.py
https://github.com/k2-fsa/icefall/blob/master/egs/yesno/ASR/tdnn/decode.py


CHAPTER

EIGHT

HUGGINGFACE

This section describes how to find pre-trained models. It also demonstrates how to try them from within your browser
without installing anything by using Huggingface spaces.

8.1 Pre-trained models

We have uploaded pre-trained models for all recipes in icefall to https://huggingface.co/.

You can find them by visiting the following link:

https://huggingface.co/models?search=icefall.

You can also find links of pre-trained models for a specific recipe by looking at the corresponding RESULTS.md. For
instance:

• https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/RESULTS.md

• https://github.com/k2-fsa/icefall/blob/master/egs/aishell/ASR/RESULTS.md

• https://github.com/k2-fsa/icefall/blob/master/egs/gigaspeech/ASR/RESULTS.md

• https://github.com/k2-fsa/icefall/blob/master/egs/wenetspeech/ASR/RESULTS.md

8.2 Huggingface spaces

We have integrated the server framework sherpa with Huggingface spaces so that you can try pre-trained models from
within your browser without the need to download or install anything.

All you need is a browser, which can be run on Windows, macOS, Linux, or even on your iPad and your phone.

Start your browser and visit the following address:

https://huggingface.co/spaces/k2-fsa/automatic-speech-recognition

and you will see a page like the following screenshot:
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You can:

1. Select a language for recognition. Currently, we provide pre-trained models from icefall for the following
languages: Chinese, English, and Chinese+English.

2. After selecting the target language, you can select a pre-trained model corresponding to the language.

3. Select the decoding method. Currently, it provides greedy search and modified_beam_search.

4. If you selected modified_beam_search, you can choose the number of active paths during the search.

5. Either upload a file or record your speech for recognition.

6. Click the button Submit for recognition.

7. Wait for a moment and you will get the recognition results.

The following screenshot shows an example when selecting Chinese+English:
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In the bottom part of the page, you can find a table of examples. You can click one of them and then click Submit for
recognition.
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8.2.1 YouTube Video

We provide the following YouTube video demonstrating how to use https://huggingface.co/spaces/k2-fsa/
automatic-speech-recognition.

Note: To get the latest news of next-gen Kaldi, please subscribe the following YouTube channel by Nadira Povey:

https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw

https://youtu.be/ElN3r9dkKE4
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NINE

DECODING WITH LANGUAGE MODELS

This section describes how to use external langugage models during decoding to improve the WER of transducer
models. To train an external language model, please refer to this tutorial: Train an RNN langugage model.

The following decoding methods with external langugage models are available:

Decoding method beam=4
modified_beam_search Beam search (i.e. really n-best decoding, the “beam” is the value of n), sim-

ilar to the original RNN-T paper. Note, this method does not use language
model.

modified_beam_search_lm_shallow_fusionAs modified_beam_search, but interpolate RNN-T scores with language
model scores, also known as shallow fusion

modified_beam_search_LODR As modified_beam_search_lm_shallow_fusion, but subtract score of
a (BPE-symbol-level) bigram backoff language model used as an approxi-
mation to the internal language model of RNN-T.

modified_beam_search_lm_rescoreAs modified_beam_search, but rescore the n-best hypotheses with exter-
nal language model (e.g. RNNLM) and re-rank them.

modified_beam_search_lm_rescore_LODRAs modified_beam_search_lm_rescore, but also subtract the score of a
(BPE-symbol-level) bigram backoff language model during re-ranking.

9.1 Shallow fusion for Transducer

External language models (LM) are commonly used to improve WERs for E2E ASR models. This tutorial shows you
how to perform shallow fusion with an external LM to improve the word-error-rate of a transducer model.

Note: This tutorial is based on the recipe pruned_transducer_stateless7_streaming, which is a streaming transducer
model trained on LibriSpeech. However, you can easily apply shallow fusion to other recipes. If you encounter any
problems, please open an issue here icefall.

Note: For simplicity, the training and testing corpus in this tutorial is the same (LibriSpeech). However, you can
change the testing set to any other domains (e.g GigaSpeech) and use an external LM trained on that domain.

Hint: We recommend you to use a GPU for decoding.

For illustration purpose, we will use a pre-trained ASR model from this link. If you want to train your model from
scratch, please have a look at Pruned transducer statelessX.
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As the initial step, let’s download the pre-trained model.

$ GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/Zengwei/icefall-asr-librispeech-
→˓pruned-transducer-stateless7-streaming-2022-12-29
$ cd icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/exp
$ git lfs pull --include "pretrained.pt"
$ ln -s pretrained.pt epoch-99.pt # create a symbolic link so that the checkpoint can be␣
→˓loaded
$ cd ../data/lang_bpe_500
$ git lfs pull --include bpe.model
$ cd ../../..

To test the model, let’s have a look at the decoding results without using LM. This can be done via the following
command:

$ exp_dir=./icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/
→˓exp/
$ ./pruned_transducer_stateless7_streaming/decode.py \

--epoch 99 \
--avg 1 \
--use-averaged-model False \
--exp-dir $exp_dir \
--bpe-model ./icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-

→˓29/data/lang_bpe_500/bpe.model \
--max-duration 600 \
--decode-chunk-len 32 \
--decoding-method modified_beam_search

The following WERs are achieved on test-clean and test-other:

$ For test-clean, WER of different settings are:
$ beam_size_4 3.11 best for test-clean
$ For test-other, WER of different settings are:
$ beam_size_4 7.93 best for test-other

These are already good numbers! But we can further improve it by using shallow fusion with external LM. Training a
language model usually takes a long time, we can download a pre-trained LM from this link.

$ # download the external LM
$ GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/ezerhouni/icefall-librispeech-
→˓rnn-lm
$ # create a symbolic link so that the checkpoint can be loaded
$ pushd icefall-librispeech-rnn-lm/exp
$ git lfs pull --include "pretrained.pt"
$ ln -s pretrained.pt epoch-99.pt
$ popd

Note: This is an RNN LM trained on the LibriSpeech text corpus. So it might not be ideal for other corpus. You
may also train a RNN LM from scratch. Please refer to this script for training a RNN LM and this script to train a
transformer LM.

To use shallow fusion for decoding, we can execute the following command:
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$ exp_dir=./icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/exp
$ lm_dir=./icefall-librispeech-rnn-lm/exp
$ lm_scale=0.29
$ ./pruned_transducer_stateless7_streaming/decode.py \

--epoch 99 \
--avg 1 \
--use-averaged-model False \
--beam-size 4 \
--exp-dir $exp_dir \
--max-duration 600 \
--decode-chunk-len 32 \
--decoding-method modified_beam_search_lm_shallow_fusion \
--bpe-model ./icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-

→˓29/data/lang_bpe_500/bpe.model \
--use-shallow-fusion 1 \
--lm-type rnn \
--lm-exp-dir $lm_dir \
--lm-epoch 99 \
--lm-scale $lm_scale \
--lm-avg 1 \
--rnn-lm-embedding-dim 2048 \
--rnn-lm-hidden-dim 2048 \
--rnn-lm-num-layers 3 \
--lm-vocab-size 500

Note that we set --decoding-method modified_beam_search_lm_shallow_fusion and
--use-shallow-fusion True to use shallow fusion. --lm-type specifies the type of neural LM we are go-
ing to use, you can either choose between rnn or transformer. The following three arguments are associated with
the rnn:

• --rnn-lm-embedding-dim
The embedding dimension of the RNN LM

• --rnn-lm-hidden-dim
The hidden dimension of the RNN LM

• --rnn-lm-num-layers
The number of RNN layers in the RNN LM.

The decoding result obtained with the above command are shown below.

$ For test-clean, WER of different settings are:
$ beam_size_4 2.77 best for test-clean
$ For test-other, WER of different settings are:
$ beam_size_4 7.08 best for test-other

The improvement of shallow fusion is very obvious! The relative WER reduction on test-other is around 10.5%. A few
parameters can be tuned to further boost the performance of shallow fusion:

• --lm-scale

Controls the scale of the LM. If too small, the external language model may not be fully utilized; if
too large, the LM score may dominant during decoding, leading to bad WER. A typical value of this
is around 0.3.

• --beam-size
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The number of active paths in the search beam. It controls the trade-off between decoding efficiency
and accuracy.

Here, we also show how –beam-size effect the WER and decoding time:

Table 9.1: WERs and decoding time (on test-clean) of shallow fusion
with different beam sizes

Beam size test-clean test-other Decoding time on test-
clean (s)

4 2.77 7.08 262
8 2.62 6.65 352
12 2.58 6.65 488

As we see, a larger beam size during shallow fusion improves the WER, but is also slower.

9.2 LODR for RNN Transducer

As a type of E2E model, neural transducers are usually considered as having an internal language model, which learns
the language level information on the training corpus. In real-life scenario, there is often a mismatch between the
training corpus and the target corpus space. This mismatch can be a problem when decoding for neural transducer
models with language models as its internal language can act “against” the external LM. In this tutorial, we show how
to use Low-order Density Ratio to alleviate this effect to further improve the performance of langugae model integration.

Note: This tutorial is based on the recipe pruned_transducer_stateless7_streaming, which is a streaming transducer
model trained on LibriSpeech. However, you can easily apply LODR to other recipes. If you encounter any problems,
please open an issue here icefall.

Note: For simplicity, the training and testing corpus in this tutorial are the same (LibriSpeech). However, you can
change the testing set to any other domains (e.g GigaSpeech) and prepare the language models using that corpus.

First, let’s have a look at some background information. As the predecessor of LODR, Density Ratio (DR) is first
proposed here to address the language information mismatch between the training corpus (source domain) and the
testing corpus (target domain). Assuming that the source domain and the test domain are acoustically similar, DR
derives the following formular for decoding with Bayes’ theorem:

score (𝑦𝑢|x , 𝑦) = log 𝑝 (𝑦𝑢|x , 𝑦1:𝑢−1) + 𝜆1 log 𝑝Target LM (𝑦𝑢|x , 𝑦1:𝑢−1)− 𝜆2 log 𝑝Source LM (𝑦𝑢|x , 𝑦1:𝑢−1)

where 𝜆1 and 𝜆2 are the weights of LM scores for target domain and source domain respectively. Here, the source
domain LM is trained on the training corpus. The only difference in the above formular compared to shallow fusion is
the subtraction of the source domain LM.

Some works treat the predictor and the joiner of the neural transducer as its internal LM. However, the LM is considered
to be weak and can only capture low-level language information. Therefore, LODR proposed to use a low-order n-gram
LM as an approximation of the ILM of the neural transducer. This leads to the following formula during decoding for
transducer model:

score (𝑦𝑢|x , 𝑦) = log 𝑝𝑟𝑛𝑛𝑡 (𝑦𝑢|x , 𝑦1:𝑢−1) + 𝜆1 log 𝑝Target LM (𝑦𝑢|x , 𝑦1:𝑢−1)− 𝜆2 log 𝑝bi-gram (𝑦𝑢|x , 𝑦1:𝑢−1)

In LODR, an additional bi-gram LM estimated on the source domain (e.g training corpus) is required. Comared to DR,
the only difference lies in the choice of source domain LM. According to the original paper, LODR achieves similar
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performance compared DR in both intra-domain and cross-domain settings. As a bi-gram is much faster to evaluate,
LODR is usually much faster.

Now, we will show you how to use LODR in icefall. For illustration purpose, we will use a pre-trained ASR model
from this link. If you want to train your model from scratch, please have a look at Pruned transducer statelessX. The
testing scenario here is intra-domain (we decode the model trained on LibriSpeech on LibriSpeech testing sets).

As the initial step, let’s download the pre-trained model.

$ GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/Zengwei/icefall-asr-librispeech-
→˓pruned-transducer-stateless7-streaming-2022-12-29
$ cd icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/exp
$ git lfs pull --include "pretrained.pt"
$ ln -s pretrained.pt epoch-99.pt # create a symbolic link so that the checkpoint can be␣
→˓loaded
$ cd ../data/lang_bpe_500
$ git lfs pull --include bpe.model
$ cd ../../..

To test the model, let’s have a look at the decoding results without using LM. This can be done via the following
command:

$ exp_dir=./icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/
→˓exp/
$ ./pruned_transducer_stateless7_streaming/decode.py \

--epoch 99 \
--avg 1 \
--use-averaged-model False \
--exp-dir $exp_dir \
--bpe-model ./icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-

→˓29/data/lang_bpe_500/bpe.model \
--max-duration 600 \
--decode-chunk-len 32 \
--decoding-method modified_beam_search

The following WERs are achieved on test-clean and test-other:

$ For test-clean, WER of different settings are:
$ beam_size_4 3.11 best for test-clean
$ For test-other, WER of different settings are:
$ beam_size_4 7.93 best for test-other

Then, we download the external language model and bi-gram LM that are necessary for LODR. Note that the bi-gram
is estimated on the LibriSpeech 960 hours’ text.

$ # download the external LM
$ GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/ezerhouni/icefall-librispeech-
→˓rnn-lm
$ # create a symbolic link so that the checkpoint can be loaded
$ pushd icefall-librispeech-rnn-lm/exp
$ git lfs pull --include "pretrained.pt"
$ ln -s pretrained.pt epoch-99.pt
$ popd
$
$ # download the bi-gram

(continues on next page)

9.2. LODR for RNN Transducer 253

https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29
https://www.openslr.org/12
https://www.openslr.org/12


icefall, Release 0.1

(continued from previous page)

$ git lfs install
$ git clone https://huggingface.co/marcoyang/librispeech_bigram
$ pushd data/lang_bpe_500
$ ln -s ../../librispeech_bigram/2gram.fst.txt .
$ popd

Then, we perform LODR decoding by setting --decoding-method to modified_beam_search_lm_LODR:

$ exp_dir=./icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/exp
$ lm_dir=./icefall-librispeech-rnn-lm/exp
$ lm_scale=0.42
$ LODR_scale=-0.24
$ ./pruned_transducer_stateless7_streaming/decode.py \

--epoch 99 \
--avg 1 \
--use-averaged-model False \
--beam-size 4 \
--exp-dir $exp_dir \
--max-duration 600 \
--decode-chunk-len 32 \
--decoding-method modified_beam_search_LODR \
--bpe-model ./icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-

→˓29/data/lang_bpe_500/bpe.model \
--use-shallow-fusion 1 \
--lm-type rnn \
--lm-exp-dir $lm_dir \
--lm-epoch 99 \
--lm-scale $lm_scale \
--lm-avg 1 \
--rnn-lm-embedding-dim 2048 \
--rnn-lm-hidden-dim 2048 \
--rnn-lm-num-layers 3 \
--lm-vocab-size 500 \
--tokens-ngram 2 \
--ngram-lm-scale $LODR_scale

There are two extra arguments that need to be given when doing LODR. --tokens-ngram specifies the order of n-
gram. As we are using a bi-gram, we set it to 2. --ngram-lm-scale is the scale of the bi-gram, it should be a negative
number as we are subtracting the bi-gram’s score during decoding.

The decoding results obtained with the above command are shown below:

$ For test-clean, WER of different settings are:
$ beam_size_4 2.61 best for test-clean
$ For test-other, WER of different settings are:
$ beam_size_4 6.74 best for test-other

Recall that the lowest WER we obtained in Shallow fusion for Transducer with beam size of 4 is 2.77/7.08, LODR
indeed further improves the WER. We can do even better if we increase --beam-size:
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Table 9.2: WER of LODR with different beam sizes
Beam size test-clean test-other
4 2.61 6.74
8 2.45 6.38
12 2.4 6.23

9.3 LM rescoring for Transducer

LM rescoring is a commonly used approach to incorporate external LM information. Unlike shallow-fusion-based
methods (see Shallow fusion for Transducer, LODR for RNN Transducer), rescoring is usually performed to re-rank
the n-best hypotheses after beam search. Rescoring is usually more efficient than shallow fusion since less computation
is performed on the external LM. In this tutorial, we will show you how to use external LM to rescore the n-best
hypotheses decoded from neural transducer models in icefall.

Note: This tutorial is based on the recipe pruned_transducer_stateless7_streaming, which is a streaming transducer
model trained on LibriSpeech. However, you can easily apply shallow fusion to other recipes. If you encounter any
problems, please open an issue here.

Note: For simplicity, the training and testing corpus in this tutorial is the same (LibriSpeech). However, you can
change the testing set to any other domains (e.g GigaSpeech) and use an external LM trained on that domain.

Hint: We recommend you to use a GPU for decoding.

For illustration purpose, we will use a pre-trained ASR model from this link. If you want to train your model from
scratch, please have a look at Pruned transducer statelessX.

As the initial step, let’s download the pre-trained model.

$ GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/Zengwei/icefall-asr-librispeech-
→˓pruned-transducer-stateless7-streaming-2022-12-29
$ cd icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/exp
$ git lfs pull --include "pretrained.pt"
$ ln -s pretrained.pt epoch-99.pt # create a symbolic link so that the checkpoint can be␣
→˓loaded
$ cd ../data/lang_bpe_500
$ git lfs pull --include bpe.model
$ cd ../../..

As usual, we first test the model’s performance without external LM. This can be done via the following command:

$ exp_dir=./icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/
→˓exp/
$ ./pruned_transducer_stateless7_streaming/decode.py \

--epoch 99 \
--avg 1 \
--use-averaged-model False \
--exp-dir $exp_dir \

(continues on next page)
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--bpe-model ./icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-
→˓29/data/lang_bpe_500/bpe.model \

--max-duration 600 \
--decode-chunk-len 32 \
--decoding-method modified_beam_search

The following WERs are achieved on test-clean and test-other:

$ For test-clean, WER of different settings are:
$ beam_size_4 3.11 best for test-clean
$ For test-other, WER of different settings are:
$ beam_size_4 7.93 best for test-other

Now, we will try to improve the above WER numbers via external LM rescoring. We will download a pre-trained LM
from this link.

Note: This is an RNN LM trained on the LibriSpeech text corpus. So it might not be ideal for other corpus. You
may also train a RNN LM from scratch. Please refer to this script for training a RNN LM and this script to train a
transformer LM.

$ # download the external LM
$ GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/ezerhouni/icefall-librispeech-
→˓rnn-lm
$ # create a symbolic link so that the checkpoint can be loaded
$ pushd icefall-librispeech-rnn-lm/exp
$ git lfs pull --include "pretrained.pt"
$ ln -s pretrained.pt epoch-99.pt
$ popd

With the RNNLM available, we can rescore the n-best hypotheses generated from modified_beam_search. Here, n
should be the number of beams, i.e --beam-size. The command for LM rescoring is as follows. Note that the
--decoding-method is set to modified_beam_search_lm_rescore and --use-shallow-fusion is set to False.

$ exp_dir=./icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/exp
$ lm_dir=./icefall-librispeech-rnn-lm/exp
$ lm_scale=0.43
$ ./pruned_transducer_stateless7_streaming/decode.py \

--epoch 99 \
--avg 1 \
--use-averaged-model False \
--beam-size 4 \
--exp-dir $exp_dir \
--max-duration 600 \
--decode-chunk-len 32 \
--decoding-method modified_beam_search_lm_rescore \
--bpe-model ./icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-

→˓29/data/lang_bpe_500/bpe.model \
--use-shallow-fusion 0 \
--lm-type rnn \
--lm-exp-dir $lm_dir \
--lm-epoch 99 \

(continues on next page)
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--lm-scale $lm_scale \
--lm-avg 1 \
--rnn-lm-embedding-dim 2048 \
--rnn-lm-hidden-dim 2048 \
--rnn-lm-num-layers 3 \
--lm-vocab-size 500

$ For test-clean, WER of different settings are:
$ beam_size_4 2.93 best for test-clean
$ For test-other, WER of different settings are:
$ beam_size_4 7.6 best for test-other

Great! We made some improvements! Increasing the size of the n-best hypotheses will further boost the performance,
see the following table:

Table 9.3: WERs of LM rescoring with different beam sizes
Beam size test-clean test-other
4 2.93 7.6
8 2.67 7.11
12 2.59 6.86

In fact, we can also apply LODR (see LODR for RNN Transducer) when doing LM rescoring. To do so, we need to
download the bi-gram required by LODR:

$ # download the bi-gram
$ git lfs install
$ git clone https://huggingface.co/marcoyang/librispeech_bigram
$ pushd data/lang_bpe_500
$ ln -s ../../librispeech_bigram/2gram.arpa .
$ popd

Then we can performn LM rescoring + LODR by changing the decoding method to modi-
fied_beam_search_lm_rescore_LODR.

Note: This decoding method requires the dependency of kenlm. You can install it via this command: pip install
https://github.com/kpu/kenlm/archive/master.zip.

$ exp_dir=./icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/exp
$ lm_dir=./icefall-librispeech-rnn-lm/exp
$ lm_scale=0.43
$ ./pruned_transducer_stateless7_streaming/decode.py \

--epoch 99 \
--avg 1 \
--use-averaged-model False \
--beam-size 4 \
--exp-dir $exp_dir \
--max-duration 600 \
--decode-chunk-len 32 \
--decoding-method modified_beam_search_lm_rescore_LODR \
--bpe-model ./icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-

(continues on next page)
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→˓29/data/lang_bpe_500/bpe.model \
--use-shallow-fusion 0 \
--lm-type rnn \
--lm-exp-dir $lm_dir \
--lm-epoch 99 \
--lm-scale $lm_scale \
--lm-avg 1 \
--rnn-lm-embedding-dim 2048 \
--rnn-lm-hidden-dim 2048 \
--rnn-lm-num-layers 3 \
--lm-vocab-size 500

You should see the following WERs after executing the commands above:

$ For test-clean, WER of different settings are:
$ beam_size_4 2.9 best for test-clean
$ For test-other, WER of different settings are:
$ beam_size_4 7.57 best for test-other

It’s slightly better than LM rescoring. If we further increase the beam size, we will see further improvements from LM
rescoring + LODR:

Table 9.4: WERs of LM rescoring + LODR with different beam sizes
Beam size test-clean test-other
4 2.9 7.57
8 2.63 7.04
12 2.52 6.73

As mentioned earlier, LM rescoring is usually faster than shallow-fusion based methods. Here, we benchmark the
WERs and decoding speed of them:

Table 9.5: LM-rescoring-based methods vs shallow-fusion-based meth-
ods (The numbers in each field is WER on test-clean, WER on test-other
and decoding time on test-clean)

Decoding method beam=4 beam=8 beam=12
modified_beam_search 3.11/7.93; 132s 3.1/7.95; 177s 3.1/7.96; 210s
modified_beam_search_lm_shallow_fusion2.77/7.08; 262s 2.62/6.65; 352s 2.58/6.65; 488s
modified_beam_search_LODR2.61/6.74; 400s 2.45/6.38; 610s 2.4/6.23; 870s
modified_beam_search_lm_rescore2.93/7.6; 156s 2.67/7.11; 203s 2.59/6.86; 255s
modified_beam_search_lm_rescore_LODR2.9/7.57; 160s 2.63/7.04; 203s 2.52/6.73; 263s

Note: Decoding is performed with a single 32G V100, we set --max-duration to 600. Decoding time here is only
for reference and it may vary.
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